Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-27T18:15:18.372Z Has data issue: false hasContentIssue false

Stellar Evolution Models of Young Stars: Progress and Limitations

Published online by Cambridge University Press:  27 January 2016

Gregory A. Feiden*
Affiliation:
Department of Physics & Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden email: gregory.feiden@physics.uu.se
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stellar evolution models are a cornerstone of young star astrophysics, which necessitates that they yield accurate and reliable predictions of stellar properties. Here, I review the current performance of stellar evolution models against young astrophysical benchmarks and highlight recent progress incorporating non-standard physics, such as magnetic field and starspots, to explain observed deficiencies. While addition of these physical processes leads to improved agreement between models and observations, there are several fundamental limitations in our understanding about how these physical processes operate. These limitations inhibit our ability to form a coherent picture of the essential physics needed to accurately compute young stellar models, but provide rich avenues for further exploration.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Baraffe, I. & Chabrier, G. 2010, A&A, 521, A44Google Scholar
Baraffe, I., Homeier, D., Allard, F., & Chabrier, G. 2015, A&A, 577, A42Google Scholar
Basu, S. & Antia, H. M. 2004, ApJL, 606, L85CrossRefGoogle Scholar
Caffau, E., Ludwig, H.-G., Steffen, M., Freytag, B., & Bonifacio, P. 2011, SoPh, 268, 255Google Scholar
Da Rio, N., Robberto, M., & Soderblom, D. R., et al. 2010, ApJ, 722, 1092Google Scholar
D'Antona, F., Ventura, P., & Mazzitelli, I. 2000, ApJ, 543, L77Google Scholar
Feiden, G. A. & Chaboyer, B. 2012, ApJ, 761, 30Google Scholar
Grevesse, N., Asplund, M., & Sauval, A. J. 2007, SSRv, 130, 105Google Scholar
Herbig, G. H. 1962, ApJ, 135, 736Google Scholar
Herczeg, G. J. & Hillenbrand, L. A. 2015, arXiv: 1505.06518Google Scholar
Hillenbrand, L. A. 1997, AJ, 113, 1733Google Scholar
Hillenbrand, L. A. & White, R. J. 2004, ApJ, 604, 741Google Scholar
Jackson, R. J. & Jeffries, R. D. 2014, MNRAS, 441, 2111Google Scholar
Jackson, R. J., Jeffries, R. D., & Maxted, P. F. L. 2009, MNRAS, 339, L89Google Scholar
Jeffries, R. D. 2012, in Star Clusters in the Era of Large Surveys, ed. Moitinho, A. & Alves, J., 163Google Scholar
Kamai, B. L., Vrba, F. J., Stauffer, J. R., & Stassun, K. G. 2014, AJ, 148, 30Google Scholar
MacDonald, J. & Mullan, D. J. 2010, ApJ, 723, 1599Google Scholar
Malo, L., Doyon, R., & Feiden, G. A., et al. 2014, ApJ, 792, 37CrossRefGoogle Scholar
Mamajek, E. E. & Bell, C. P. M. 2014, MNRAS, 445, 2169CrossRefGoogle Scholar
Mathieu, R. D., Baraffe, I., Simon, M., Stassun, K. G., & White, R. 2007, in Protostars & Planets V, 411Google Scholar
Mullan, D. J. & MacDonald, J. 2001, ApJ, 559, 353CrossRefGoogle Scholar
Spruit, H. C. 1982, A&A, 108, 348Google Scholar
Spruit, H. C. & Weiss, A. 1986, A&A, 166, 167Google Scholar
Stahler, S. W. 1988, ApJ, 332, 804Google Scholar
Stassun, K. G., Feiden, G. A., & Torres, G. 2014, New Astronomy Reviews, 60, 1Google Scholar
Stauffer, J. R., Hartmann, L. W., & Fazio, G. G., et al. 2007, ApJS, 172, 663Google Scholar
Stauffer, J. R., Jones, B. F., & Backman, D., et al. 2003, AJ, 126, 833CrossRefGoogle Scholar