Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T01:16:22.340Z Has data issue: false hasContentIssue false

Star formation rates on global and cloud scales within the Galactic Centre

Published online by Cambridge University Press:  09 February 2017

A.T. Barnes
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University
S.N. Longmore
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University
C. Battersby
Affiliation:
Harvard-Smithsonian Center for Astrophysics
J. Bally
Affiliation:
Centre for Astrophysics and Space Astronomy, University of Colorado
J.M.D. Kruijssen
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg Max-Planck Institut für Astronomie
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The environment within the inner few hundred parsecs of the Milky Way, known as the “Central Molecular Zone” (CMZ), harbours densities and pressures orders of magnitude higher than the Galactic Disc; akin to that at the peak of cosmic star formation (Kruijssen & Longmore 2013). Previous studies have shown that current theoretical star-formation models under-predict the observed level of star-formation (SF) in the CMZ by an order of magnitude given the large reservoir of dense gas it contains. Here we explore potential reasons for this apparent dearth of star formation activity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Henshaw, J. D. et al., 2016, MNRAS, 457, 2675 CrossRefGoogle Scholar
Immer, K. et al. 2012, ApJ, 537, A121 Google Scholar
Kennicutt, R. C. & Evans, N. J. 2012, ARA&A, 50, 531 Google Scholar
Koepferl, C. M. et al. 2015, ApJ, 799, 53 Google Scholar
Kruijssen, J. M. D. & Longmore, S. N. 2013, MNRAS, 435, 2598 CrossRefGoogle Scholar
Kruijssen, J. M. D. et al. 2014, MNRAS, 440, 3370 Google Scholar
Kruijssen, J. M. D., Dale, J. E., & Longmore, S. N. 2015, MNRAS, 447, 1059 Google Scholar
Krumholz, M. R. & Kruijssen, J. M. D. 2015, MNRAS, 453, 739 CrossRefGoogle Scholar
Krumholz, M. R., Kruijssen, J. M. D., & Crocker, R. M. 2016, preprint, (arXiv:1605.02850)Google Scholar
Longmore, S. N. et al. 2013a, MNRAS, 429, 987 Google Scholar
Longmore, S. N. et al. 2013b, MNRAS, 433, L15 Google Scholar
Rathborne, J. M. et al., 2014a, ApJ, 786, 140 Google Scholar
Rathborne, J. M. et al., 2014b, ApJ, 795, 25 Google Scholar
Rathborne, J. M. et al., 2015, ApJ, 802, 125 Google Scholar
Walker, D. L., 2015, MNRAS, 449, 715 Google Scholar
Yusef-Zadeh, F. et al. 2009, ApJ, 702, 178 Google Scholar