Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T14:24:47.023Z Has data issue: false hasContentIssue false

The Spectral Energy Distribution of the Earliest Phases of Massive Star Formation

Published online by Cambridge University Press:  31 March 2017

Randolf Klein
Affiliation:
SOFIA-USRA, NASA Ames Research Center, MS 232-12, PO box 1, Moffet Field, CA 94035 email: rklein@sofia.usra.edu
Jennifer Cooper
Affiliation:
SOFIA-USRA, NASA Ames Research Center, MS 232-12, PO box 1, Moffet Field, CA 94035 email: rklein@sofia.usra.edu
Leslie Looney
Affiliation:
University of Illinois, Dept. of Astronomy, MC-221, 1002 W. Green St., Urbana, IL 61801
Thomas Henning
Affiliation:
Max-Planck-Institut für Astronomie Königstuhl 17, D-69117 Heidelberg
Sukanya Chakrabarti
Affiliation:
School of Physics and Astronomy, Rochester Institute of Technology 84 Lomb Memorial Dr., Rochester, NY 14623
Sachin Shenoy
Affiliation:
SOFIA-USRA, NASA Ames Research Center, MS 232-12, PO box 1, Moffet Field, CA 94035 email: rklein@sofia.usra.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have selected cold and massive (M > 100M) cores as candidates for early phases of star formation from millimeter continuum surveys without associations at short wavelengths. We compared the millimeter continuum peak positions with IR and radio catalogs and excluded cores that had sources associated with the cores’ peaks. We compiled a list of 173 cores in over 117 regions that are candidates for very early phases of Massive Star Formation (MSF). Now with the Spitzer and Herschel archives, these cores can be characterized further. We are compiling this data set to construct the complete spectral energy distribution (SED) in the mid- and far-infrared with good spatial resolution and broad spectral coverage. This allow us to disentangle the complex regions and model the SED of the deeply embedded protostars/clusters. We present a status report of our efforts: a preview of the IR properties of all cores and their embedded source inferred from a grey body fit to the compiled SEDs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Beltrán, M. T., Brand, J., Cesaroni, R., Fontani, F., Pezzuto, S., et al. 2006, A&A, 447, 221 Google Scholar
Chakrabarti, S. & McKee, C. F. 2005, ApJ, 631, 792 CrossRefGoogle Scholar
Faúndez, S., Bronfman, L., Garay, G., Chini, R., Nyman, L.-Å., & May, J. 2004, A&A, 426, 97 Google Scholar
Hillenbrand, L. A. & Hartmann, L. W. 1998, ApJ, 492, 540 CrossRefGoogle Scholar
Hunter, T. R., Churchwell, E., Watson, C., Cox, P., Benford, D. J., et al. 2000, AJ, 119, 2711 CrossRefGoogle Scholar
Klein, R., Posselt, B., Schreyer, K., Forbrich, J., & Henning, T. 2005, ApJS, 161, 361 CrossRefGoogle Scholar
Miller, G. E. & Scalo, J. M. 1979, ApJS, 41, 513 CrossRefGoogle Scholar
Robitaille, T. P., Whitney, B. A., Indebetouw, R., et al. 2006, ApJS, 167, 256 CrossRefGoogle Scholar
Sridharan, T. K., Beuther, H., Saito, M., Wyrowski, F., & Schilke, P. 2005, ApJL, 634, L57 CrossRefGoogle Scholar
Sridharan, T. K., Beuther, H., Schilke, P., Menten, K. M., & Wyrowski, F. 2002, ApJ, 566, 931 CrossRefGoogle Scholar