Skip to main content Accessibility help

Solar System Ephemerides, Pulsar Timing, Gravitational Waves, & Navigation

  • T. Joseph W. Lazio (a1), S. Bhaskaran (a1), C. Cutler (a1), W. M. Folkner (a1), R. S. Park (a1), J. A. Ellis (a2), T. Ely (a1), S. R. Taylor (a3) and M. Vallisneri (a1)...


In-spiraling supermassive black holes should emit gravitational waves, which would produce characteristic distortions in the time of arrival residuals from millisecond pulsars. Multiple national and regional consortia have constructed pulsar timing arrays by precise timing of different sets of millisecond pulsars. An essential aspect of precision timing is the transfer of the times of arrival to a (quasi-)inertial frame, conventionally the solar system barycenter. The barycenter is determined from the knowledge of the planetary masses and orbits, which has been refined over the past 50 years by multiple spacecraft. Within the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), uncertainties on the solar system barycenter are emerging as an important element of the NANOGrav noise budget. We describe what is known about the solar system barycenter, touch upon how uncertainties in it affect gravitational wave studies with pulsar timing arrays, and consider future trends in spacecraft navigation.



Hide All
Begelman, M. C., Blandford, R. D., & Rees, M. J., 1980, Nature, 287, 307
Bolton, S. J., et al. 2017, Science, 356, 821
Chester, T. J. & Butman, S. A. 1981, “Navigation Using X-ray Pulsars,” Telecommunications & Data Acquisition Progress Report 42-63, Jet Propulsion Laboratory, Pasadena, CA
Deng, X. P., Hobbs, G., You, X. P., et al. 2013, Adv. Space Res., 52, 1602
Edgington, S. G., & Spilker, L. J., 2016, Nature Geosci., 9, 472
Ely, T., & Seubert, J., 2015, Adv. Astronaut. Sci. Spaceflight Mechanics, 155, 2799
Jaffe, A. H., & Backer, D. C., 2003, ApJ, 583, 616
Khan, F. M., Fiacconi, D., Mayer, L., Berczik, P., & Just, A., 2016, ApJ, 828, 73
Lorimer, D. R. & Kramer, M. 2004, Handbook of Pulsar Astronomy, Cambridge Observing Handbooks for Research Astronomers, Vol. 4 (Cambridge Univ. Press: Cambridge, UK)
Mingarelli, C. M. F., Lazio, T. J. W., et al. 2017, Nature Astron.; doi: 10.1038/s41550-017-0299-6
Rayman, M. D., Varghese, P., Lehman, D. H., & Livesay, L. L., 2000, Acta Astronautica, 47, 475
Rong, J., Luping, X., Zhang, H., & Cong, L., 2016, Adv. Space Res., 58, 1864
Sesana, A., 2013, Classical Quant. Grav., 30, 244009
Sheikh, S. I., Pines, D. J., Ray, P. S., et al. 2006, J. Guid. Control Dynam., 29, 49
Shemar, S., Fraser, G., Heil, L., et al. 2016, Exp. Astron., 42, 101
Zheng, S., Ge, M., Han, D., et al. 2017, Sci. Sin. Physica, Mechanica, & Astronomica, 47, 099505
MathJax is a JavaScript display engine for mathematics. For more information see



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed