Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T04:23:27.278Z Has data issue: false hasContentIssue false

(Simulating) Coronal Mass Ejections in Active Stars

Published online by Cambridge University Press:  24 September 2020

Julián D. Alvarado-Gómez
Affiliation:
Leibniz Institute for Astrophysics Potsdam An der Sternwarte 16, 14482 Potsdam, Germany email: mailto:julian.alvarado-gomez@aip.de | AstroRaikoh Center for Astrophysics Harvard & Smithsonian 60 Garden Street, Cambridge, MA 02138, USA
Jeremy J. Drake
Affiliation:
Center for Astrophysics Harvard & Smithsonian 60 Garden Street, Cambridge, MA 02138, USA
Cecilia Garraffo
Affiliation:
Institute for Applied Computational Science, Harvard University 33 Oxford Street, Cambridge, MA 02138, USA
Sofia P. Moschou
Affiliation:
Center for Astrophysics Harvard & Smithsonian 60 Garden Street, Cambridge, MA 02138, USA
Ofer Cohen
Affiliation:
University of Massachusetts at Lowell, Department of Physics & Applied Physics 600 Suffolk Street, Lowell, MA 01854, USA
Rakesh K. Yadav
Affiliation:
Institute for Applied Computational Science, Harvard University 33 Oxford Street, Cambridge, MA 02138, USA
Federico Fraschetti
Affiliation:
Center for Astrophysics Harvard & Smithsonian 60 Garden Street, Cambridge, MA 02138, USA Department of Planetary Sciences-Lunar and Planetary Laboratory University of Arizona, Tucson, AZ 85721, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The stellar magnetic field completely dominates the environment around late-type stars. It is responsible for driving the coronal high-energy radiation (e.g. EUV/X-rays), the development of stellar winds, and the generation transient events such as flares and coronal mass ejections (CMEs). While progress has been made for the first two processes, our understanding of the eruptive behavior in late-type stars is still very limited. One example of this is the fact that despite the frequent and highly energetic flaring observed in active stars, direct evidence for stellar CMEs is almost non-existent. Here we discuss realistic 3D simulations of stellar CMEs, analyzing their resulting properties in contrast with solar eruptions, and use them to provide a common framework to interpret the available stellar observations. Additionally, we present results from the first 3D CME simulations in M-dwarf stars, with emphasis on possible observable signatures imprinted in the stellar corona.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

Footnotes

*

Karl Schwarzschild Fellow

References

Aarnio, A. N., Matt, S. P., & Stassun, K. G. 2012, ApJ, 760, 9CrossRefGoogle Scholar
Alvarado-Gómez, J. D., Drake, J. J., Cohen, O., Moschou, S. P., & Garraffo, C. 2018, ApJ, 862, 93CrossRefGoogle Scholar
Alvarado-Gómez, J. D., Drake, J. J., Moschou, S. P., et al. 2019, ApJ, 884, L13CrossRefGoogle Scholar
Alvarado-Gómez, J. D., Hussain, G. A. J., Grunhut, J., et al. 2015, A&A, 582, A38CrossRefGoogle Scholar
Argiroffi, C., Reale, F., Drake, J. J., et al. 2019, Nature Astronomy, 3, 742CrossRefGoogle Scholar
Benz, A. O. 2017, Living Reviews in Solar Physics, 14, 2CrossRefGoogle Scholar
Caramazza, M., Flaccomio, E., Micela, G., et al. 2007, A&A, 471, 645CrossRefGoogle Scholar
Carrington, R. C. 1859, MNRAS, 20, 13CrossRefGoogle Scholar
Crosley, M. K., & Osten, R. A. 2018, ApJ, 856, doi:10.3847/1538-4357/aaaec2CrossRefGoogle Scholar
Crosley, M. K., Osten, R. A., Broderick, J. W., et al. 2016, ApJ, 830, 24CrossRefGoogle Scholar
Donati, J.-F. 2011, in IAU Symposium, Vol. 271, Astrophysical Dynamics: From Stars to Galaxies, ed. N. H. Brummell, A. S. Brun, M. S. Miesch, & Y. Ponty, 2331Google Scholar
Donati, J.-F. & Landstreet, J. D. 2009, ARA&A, 47, 333CrossRefGoogle Scholar
Drake, J. J., Cohen, O., Garraffo, C., & Kashyap, V. 2016, in IAU Symposium, Vol. 320, Solar and Stellar Flares and their Effects on Planets, ed. A. G. Kosovichev, S. L. Hawley, & P. Heinzel, 196201CrossRefGoogle Scholar
Drake, J. J., Cohen, O., Yashiro, S., & Gopalswamy, N. 2013, ApJ, 764, 170CrossRefGoogle Scholar
Drake, J. J., Peres, G., Orlando, S., Laming, J. M., & Maggio, A. 2000, ApJ, 545, 1074CrossRefGoogle Scholar
Emslie, A. G., Dennis, B. R., Shih, A. Y., et al. 2012, ApJ, 759, 71CrossRefGoogle Scholar
Fraschetti, F., Drake, J. J., Alvarado-Gómez, J. D., et al. 2019, ApJ, 874, 21CrossRefGoogle Scholar
Gibson, S. E. & Low, B. C. 1998, ApJ, 493, 460CrossRefGoogle Scholar
Gombosi, T. I., van der Holst, B., Manchester, W. B., & Sokolov, I. V. 2018, Living Reviews in Solar Physics, 15, 4CrossRefGoogle Scholar
Guarcello, M. G., Micela, G., Sciortino, S., et al. 2019, A&A, 622, A210CrossRefGoogle Scholar
Güdel, M. 1997, ApJ, 480, L121CrossRefGoogle Scholar
Güdel, M., Audard, M., Reale, F., Skinner, S. L., & Linsky, J. L. 2004, A&A, 416, 713CrossRefGoogle Scholar
Huenemoerder, D. P., Schulz, N. S., Testa, P., et al. 2010, ApJ, 723, 1558CrossRefGoogle Scholar
Hussain, G. A. J., Alvarado-Gómez, J. D., Grunhut, J., et al. 2016, A&A, 585, A77CrossRefGoogle Scholar
Jeffers, S. V., Petit, P., Marsden, S. C., et al. 2014, A&A, 569, A79CrossRefGoogle Scholar
Jin, M., Manchester, W. B., van der Holst, B., et al. 2017a, ApJ, 834, 172CrossRefGoogle Scholar
Jin, M., Manchester, W. B., van der Holst, B., et al. 2013, ApJ, 773, 50CrossRefGoogle Scholar
Jin, M., Manchester, W. B., van der Holst, B., et al. 2017b, ApJ, 834, 173CrossRefGoogle Scholar
Kashyap, V. L., Drake, J. J., Güdel, M., & Audard, M. 2002, ApJ, 580, 1118CrossRefGoogle Scholar
Kretzschmar, M. 2011, A&A, 530, A84CrossRefGoogle Scholar
Leitzinger, M., Odert, P., Greimel, R., et al. 2014, MNRAS, 443, 898CrossRefGoogle Scholar
Manchester, IV, W. B., Vourlidas, A., Tóth, G., et al. 2008, ApJ, 684, 1448CrossRefGoogle Scholar
Melott, A. L. & Thomas, B. C. 2012, Nature, 491, E1CrossRefGoogle Scholar
Moreno Cárdenas, F., Cristancho Sánchez, S., & Vargas Domnguez, S. 2016, Advances in Space Research, 57, 257CrossRefGoogle Scholar
Morgenthaler, A., Petit, P., Saar, S., et al. 2012, A&A, 540, A138CrossRefGoogle Scholar
Moschou, S.-P., Drake, J. J., Cohen, O., Alvarado-Gomez, J. D., & Garraffo, C. 2017, ApJ, 850, 191CrossRefGoogle Scholar
Moschou, S.-P., Drake, J. J., Cohen, O., et al. 2019, ApJ, 877, 105CrossRefGoogle Scholar
Odert, P., Leitzinger, M., Hanslmeier, A., & Lammer, H. 2017, MNRAS, 472, 876CrossRefGoogle Scholar
Oran, R., Landi, E., van der Holst, B., Sokolov, I. V., & Gombosi, T. I. 2017, ApJ, 845, 98CrossRefGoogle Scholar
Reiners, A. 2014, in IAU Symposium, Vol. 302, Magnetic Fields throughout Stellar Evolution, ed. P. Petit, M. Jardine, & H. C. Spruit, 156163CrossRefGoogle Scholar
Sokolov, I. V., van der Holst, B., Oran, R., et al. 2013, ApJ, 764, 23CrossRefGoogle Scholar
Suárez Mascareño, A., Rebolo, R., & González Hernández, J. I. 2016, A&A, 595, A12CrossRefGoogle Scholar
Titov, V. S. & Démoulin, P. 1999, A&A, 351, 707Google Scholar
van der Holst, B., Sokolov, I. V., Meng, X., et al. 2014, ApJ, 782, 81CrossRefGoogle Scholar
Vida, K., Leitzinger, M., Kriskovics, L., et al. 2019, A&A, 623, A49CrossRefGoogle Scholar
Villadsen, J. R. 2017, PhD thesis, California Institute of TechnologyGoogle Scholar
Wargelin, B. J., Saar, S. H., Pojmański, G., Drake, J. J., & Kashyap, V. L. 2017, MNRAS, 464, 3281CrossRefGoogle Scholar
Webb, D. F. & Howard, T. A. 2012, Living Reviews in Solar Physics, 9, 3CrossRefGoogle Scholar
Wright, N. J., Drake, J. J., Mamajek, E. E., & Henry, G. W. 2011, ApJ, 743, 48CrossRefGoogle Scholar
Wright, N. J., Newton, E. R., Williams, P. K. G., Drake, J. J., & Yadav, R. K. 2018, MNRAS, 479, 2351CrossRefGoogle Scholar
Yadav, R. K., Christensen, U. R., Wolk, S. J., & Poppenhaeger, K. 2016, ApJ, 833, L28CrossRefGoogle Scholar
Yashiro, S. & Gopalswamy, N. 2009, in IAU Symposium, Vol. 257, Universal Heliophysical Processes, ed. N. Gopalswamy & D. F. Webb, 233243Google Scholar