Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-08-05T01:22:33.587Z Has data issue: false hasContentIssue false

Serendipitous discovery of an “ALMA-only” galaxy at 5 < z < 6 in an ALMA 3-mm survey

Published online by Cambridge University Press:  04 June 2020

Christina C. Williams*
Affiliation:
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA email: ccwilliams@email.arizona.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss the serendipitous discovery of a dusty high-redshift galaxy in a small (8 arcmin2) ALMA 3-mm survey Williams et al. (2019). The galaxy was previously unknown and is absent from existing multi-wavelength catalogs (“ALMA-only”). Using the ALMA position as prior, we perform forced deblended photometry to constrain its spectral energy distribution. The spectral energy distribution is well described by a massive (M* = 1010.8 M) and highly obscured (AV ∼ 4) galaxy at redshift z = 5.5 ± 1.1 with star formation rate ∼ 300 Myr−1. Our small survey area implies an uncertain but large contribution to the cosmic star formation rate density, similar to the contribution from all ultraviolet-selected galaxies combined at this redshift. This galaxy likely traces an abundant population of massive galaxies absent from current samples of infrared-selected or sub-millimeter galaxies, but with larger space densities, higher duty cycles, and significant contribution to the cosmic star-formation rate and stellar mass densities.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Aravena, M., Decarli, R., Walter, F., et al. 2016, ApJ, 833, 6810.3847/1538-4357/833/1/68CrossRefGoogle Scholar
Béthermin, M., De Breuck, C., Sargent, M., & Daddi, E. 2015, A&A, 576, L9Google Scholar
Bouwens, R. J., Oesch, P. A., Labbé, I., et al. 2016, ApJ, 830, 6710.3847/0004-637X/830/2/67CrossRefGoogle Scholar
Carnall, A. C., McLure, R. J., Dunlop, J. S., & Davé, R. 2018, MNRAS, 480, 437910.1093/mnras/sty2169CrossRefGoogle Scholar
Casey, C. M., Narayanan, D., & Cooray, A. 2014, Phys. Rep., 541, 45CrossRefGoogle Scholar
Casey, C. M., Hodge, J., Zavala, J. A., et al. 2018, ApJ, 862, 78CrossRefGoogle Scholar
Cowie, L. L., González-López, J., Barger, A. J., et al. 2018, ApJ, 865, 10610.3847/1538-4357/aadc63CrossRefGoogle Scholar
Danielson, A. L. R., Swinbank, A. M., Smail, I., et al. 2017, ApJ, 840, 7810.3847/1538-4357/aa6cafCrossRefGoogle Scholar
Dunlop, J. S., McLure, R. J., Biggs, A. D., et al. 2017, MNRAS, 466, 86110.1093/mnras/stw3088CrossRefGoogle Scholar
Finkelstein, S. L., Ryan, R. E. Jr., Papovich, C., et al. 2015, ApJ, 810, 7110.1088/0004-637X/810/1/71CrossRefGoogle Scholar
González-López, J., Decarli, R., Pavesi, R., et al. 2019, arXiv e-prints,arXiv:1903.09161Google Scholar
Koprowski, M. P., Dunlop, J. S., Michałowski, M. J., et al. 2017, MNRAS, 471, 415510.1093/mnras/stx1843CrossRefGoogle Scholar
Liu, D., Daddi, E., Dickinson, M., et al. 2018, ApJ, 853, 17210.3847/1538-4357/aaa600CrossRefGoogle Scholar
Madau, P., & Dickinson, M. 2014, ARAA, 52, 41510.1146/annurev-astro-081811-125615CrossRefGoogle Scholar
Magnelli, B., Karim, A., Staguhn, J., et al. 2019, arXiv e-printsGoogle Scholar
Marrone, D. P., Spilker, J. S., Hayward, C. C., et al. 2018, Nature, 553, 5110.1038/nature24629CrossRefGoogle Scholar
McLeod, D. J., McLure, R. J., & Dunlop, J. S. 2016, MNRAS, 459, 3812CrossRefGoogle Scholar
Michałowski, M. J., Dunlop, J. S., Koprowski, M. P., et al. 2017, MNRAS, 469, 49210.1093/mnras/stx861CrossRefGoogle Scholar
Oesch, P. A., Bouwens, R. J., Illingworth, G. D., Labbé, I., & Stefanon, M. 2018, ApJ, 855, 105CrossRefGoogle Scholar
Pavesi, R., Riechers, D. A., Sharon, C. E., et al. 2018, ApJ, 861, 4310.3847/1538-4357/aac6b6CrossRefGoogle Scholar
Scoville, N., Sheth, K., Aussel, H., et al. 2016, ApJ, 820, 8310.3847/0004-637X/820/2/83CrossRefGoogle Scholar
Song, M., Finkelstein, S. L., Ashby, M. L. N., et al. 2016, ApJ, 825, 510.3847/0004-637X/825/1/5CrossRefGoogle Scholar
Spilker, J. S., Marrone, D. P., Aravena, M., et al. 2016, ApJ, 826, 11210.3847/0004-637X/826/2/112CrossRefGoogle Scholar
Spilker, J. S., Aravena, M., Béthermin, M., et al. 2018, Science, 361, 101610.1126/science.aap8900CrossRefGoogle Scholar
Straatman, C. M. S., Labbé, I., Spitler, L. R., et al. 2014, ApJL, 783, L14CrossRefGoogle Scholar
Swinbank, A. M., Simpson, J. M., Smail, I., et al. 2014, MNRAS, 438, 126710.1093/mnras/stt2273CrossRefGoogle Scholar
Tisanić, K., Smolčić, V., Delhaize, J., et al. 2019, A&A, 621, A139Google Scholar
Williams, C. C., Curtis-Lake, E., Hainline, K. N., et al. 2018, ApJS, 236, 2Google Scholar
Williams, C. C., Labbe, I., Spilker, J., et al. 2019, arXiv e-prints; ApJ submittedGoogle Scholar
Yamaguchi, Y., Kohno, K., Hatsukade, B., et al. 2019, arXiv e-printsGoogle Scholar
Zavala, J. A., Casey, C. M., da Cunha, E., et al. 2018a, ApJ, 869, 7110.3847/1538-4357/aaecd2CrossRefGoogle Scholar
Zavala, J. A., Montaña, A., Hughes, D. H., et al. 2018b, Nature Astronomy, 2, 5610.1038/s41550-017-0297-8CrossRefGoogle Scholar