Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-19T14:33:05.891Z Has data issue: false hasContentIssue false

Science with the James Webb Space Telescope

Published online by Cambridge University Press:  17 May 2006

Jonathan P. Gardner
Affiliation:
Exploration of the Universe Division, Observational Cosmology Laboratory, Code 665, Goddard Space Flight Center, Greenbelt MD 20771, USA email: jonathan.p.gardner@nasa.gov
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The scientific capabilities of the James Webb Space Telescope (JWST) fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall onto dust-enshrouded protostars, to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. To enable these four science themes, JWST will be a large (6.5m) cold (50K) telescope launched to the second Earth-Sun Lagrange point early in the next decade. It is the successor to the Hubble Space Telescope, and is a partnership of NASA, ESA and CSA. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 27 microns. The scientific investigations described here define the measurement capabilities of the telescope, but they do not imply that those particular observations will be made. JWST is a facility-class mission, so most of the observing time will be allocated to investigators from the international astronomical community through competitively-selected proposals.

Type
Contributed Papers
Copyright
2006 International Astronomical Union