Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-12T00:40:30.921Z Has data issue: false hasContentIssue false

Re-examination of Large Scale Structure & Cosmic Flows

Published online by Cambridge University Press:  12 October 2016

Marc Davis
Affiliation:
Departments of Astronomy & Physics, University of California at Berkeley, CA 94720 email: mdavis@berkeley.edu
Adi Nusser
Affiliation:
Physics Department and the Asher Space Science Institute-Technion, Haifa 32000, Israel email: adi@physics.technion.ac.il
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Comparison of galaxy flows with those predicted from the local galaxy distribution ended as an active field after two analyses came to vastly different conclusions 25 years ago, but that was due to faulty data. All the old results are therefore suspect. With new data collected in the last several years, the problem deserves another look. The goal is to explain the 640 km/s dipole anisotropy of the CMBR. For this we analyze the gravity field inferred from the enormous data set derived from the 2MASS collection of galaxies (Huchra et al. 2005), and compare it to the velocity field derived from the well calibrated SFI++ Tully-Fisher catalog (Springob et al. 2007). Using the “Inverse Method” to minimize Malmquist biases, within 10,000 km/s the gravity field is seen to predict the velocity field (Davis et al. 2011) to remarkable consistency. This is a beautiful demonstration of linear perturbation theory and is fully consistent with standard values of the cosmological variables.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Aaronson, M., Huchra, J., Mould, J., Schechter, P. L., & Tully, R. B. 1982, ApJ, 258, 64 Google Scholar
Chodorowski, M. J. & Nusser, A. 1999, MNRAS, 309, L30 Google Scholar
Davis, M., Nusser, A., Masters, K. L., Springob, C., Huchra, J. P., & Lemson, G. 2011, MNRAS, 413, 2906 Google Scholar
Davis, M., Nusser, A., & Willick, J. A. 1996, ApJ, 473, 22 Google Scholar
Gorski, K. M., Davis, M., Strauss, M. A., White, S. D. M., & Yahil, A. 1989, ApJ, 344, 1 CrossRefGoogle Scholar
Huchra, J., Jarrett, T., Skrutskie, M., Cutri, R., Schneider, S., Macri, L., Steining, R., Mader, J., Martimbeau, N., & George, T. 2005, in Astronomical Society of the Pacific Conference Series, Vol. 329, Nearby Large-Scale Structures and the Zone of Avoidance, ed. Fairall, A. P. & Woudt, P. A., 135–+Google Scholar
Kaiser, N. 1987, MNRAS, 227, 1 Google Scholar
Linder, E. V. 2005, Physical Review D., 72, 043529 Google Scholar
Nusser, A. & Davis, M. 1994, ApJL, 421, L1 Google Scholar
Nusser, A., Dekel, A., Bertschinger, E., & Blumenthal, G. R. 1991, ApJ, 379, 6 Google Scholar
Nusser, A., Davis, M., & Branchini, E. 2014, ApJ, 788, 157 CrossRefGoogle Scholar
Peebles, P. J. E. 1980, The large-scale structure of the universe (Princeton University Press)Google Scholar
Schechter, P. L. 1980, Astronomical Journal, 85, 801 Google Scholar
Springob, C. M., Masters, K. L., Haynes, M. P., Giovanelli, R., & Marinoni, C. 2007, ApJ. S, 172, 599 Google Scholar
Westover, M. 2007, PhD thesis, Harvard UniversityGoogle Scholar
Yahil, A., Strauss, M. A., Davis, M., & Huchra, J. P. 1991, ApJ, 372, 380 Google Scholar