Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T07:40:58.895Z Has data issue: false hasContentIssue false

Recent Results from a High-Resolution Spectroscopic Follow-up Survey of Classical Novæ

Published online by Cambridge University Press:  29 August 2019

L. Izzo*
Affiliation:
Instituto de Astrofisica de Andalucia, Granada, Spain email: izzo@iaa.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This talk presented and discussed some recent results obtained from a photometric and spectroscopic optical follow-up survey of bright classical novæ. The survey concerned the role of those objects in Galactic chemical evolution, with particular attention to the production of lithium.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Ackermann, M., et al. 2014, Science, 345, 6196Google Scholar
Aguiar, G. de S., & Salvo, R. 2013, IAUC, 9266Google Scholar
Bode, M. F., & Evans, A. (eds.) 2008, Classical Novæ (CUP, Cambridge, UK)CrossRefGoogle Scholar
Cameron, A. G. W., & Fowler, W. A. 1971, ApJ, 164, 111CrossRefGoogle Scholar
Cheung, C. C., et al. 2016, ApJ, 826, 142CrossRefGoogle Scholar
Chomiuk, L., et al. 2014, ApJ, 514, 339Google Scholar
Conti, P. S. 1968, ApJ, 152, 65710.1086/149581CrossRefGoogle Scholar
Dekker, H., D’Odorico, S., Kaufer, A., Delabre, B., & Kotzlowski, H. 2000, Proc. SPIE, 4008, 53410.1117/12.395512CrossRefGoogle Scholar
Della Valle, M., & Livio, M. 1994, A&A, 286, 786Google Scholar
Della Valle, M., Pasquini, L., Daou, D., & Williams, R. E. 2003, A&A, 390, 155Google Scholar
Fields, B. D., Molaro, P., & Sarkar, S. 2014, Chin. Phys. C, 38, 339Google Scholar
Gehrz, R. D., Truran, J. W., Williams, R. E., & Starrfield, S. 1998, PASP, 110, 743CrossRefGoogle Scholar
Gomez-Gomar, J., Hernanz, M., Jose, J., & Isern, J. 1998, MNRAS 296, 91310.1046/j.1365-8711.1998.01421.xCrossRefGoogle Scholar
Jose, J., & Hernanz, M. 1998, ApJ, 494, 680CrossRefGoogle Scholar
Kaufer, A., Stahl, O., Tubbesing, S., Nrregaard, P., Avila, G., Francois, P., Pasquini, L., & Pizzella, A. 1999, ESO Messenger, 95, 8Google Scholar
Izzo, L., Mason, E., Vanzi, L., Fernandez, J. M., Espinoza, N., Helminiak, K., & Della Valle, M. 2013, ATeL 5639Google Scholar
Izzo, L., et al. 2015, ApJ, 808, L14CrossRefGoogle Scholar
Izzo, L., et al. 2016, ATeL 9587Google Scholar
Izzo, L., et al. 2018, MNRAS, 478, 1601CrossRefGoogle Scholar
Li, K. L., et al. 2017, Nature Astron., 1, 697CrossRefGoogle Scholar
Molaro, P., Izzo, L., Mason, E., Bonifacio, P., & Della Valle, M. 2016, MNRAS, 463, 117CrossRefGoogle Scholar
Nomoto, K., Kobayashi, C., & Tominaga, N. 2013, ARA&A, 51, 457CrossRefGoogle Scholar
O’Brien, T. et al. 2015, in: Proc. Advancing Astrophysics with the SKA, POS ( AASKA14), 062Google Scholar
Romano, D., Matteucci, F., Ventura, P., & D’Antona, F. 2001, A&A 374, 646Google Scholar
Spite, F. 1990, MmSAIt, 61, 663Google Scholar
Starrfield, S., Iliadis, C., Hix, W. R., Timmes, F. X., & Sparks, W. M. 2009, ApJ, 692, 1532CrossRefGoogle Scholar
Tajitsu, A., Sadakane, K., Naito, H., Arai, A., & Aoki, W. 2015, Nature, 518, 381CrossRefGoogle Scholar
Truran, J. W., & Livio, M. 1986, ApJ, 308, 721CrossRefGoogle Scholar
Vanzi, L., et al. 2012, MNRAS, 424, 277010.1111/j.1365-2966.2012.21382.xCrossRefGoogle Scholar
Williams, S. C., Darnley, M. J., & Bode, M. F. 2015, ATeL, 7230Google Scholar