Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-01T04:50:19.950Z Has data issue: false hasContentIssue false

The real time evolution of post-AGB stars

Published online by Cambridge University Press:  09 October 2020

Marcin Hajduk*
Affiliation:
University of Warmia and Mazury, ul.Oczapowskiego 2, 10-719 Olsztyn, Poland, email: marcin.hajduk@uwm.edu.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Evolution of post-AGB stars is extremely fast. They cross the HR diagram vertically on a timescale of hundreds to some ten thousands of years to reach maximum temperature in their lifetime. This is reflected in an increasing excitation of planetary nebulae on a timescale of years and decades. Since evolutionary timescale of post-AGB stars is very sensitive to their mass, observed changes can be used to determine model dependent central star masses. If an additional parameter is determined (e.g. luminosity or dynamic age), the observed evolution of planetary nebulae can be utilized for observational verification of theoretical models.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Acker, A. et al. 1992, The Strasbourg-ESO Catalogue of Galactic Planetary NebulaeCrossRefGoogle Scholar
Bloecker, T. 1999, A&A, 299, 755Google Scholar
Clayton, G. 2006, ApJ, 646L, 69CrossRefGoogle Scholar
Dopita, M. A. & Meatheringham, S. J. 2006, ApJ, 377, 480CrossRefGoogle Scholar
Feibelman, W. A. et al. 1992, PASP, 104, 339CrossRefGoogle Scholar
Ferland, G. et al. 2017, RMxAA, 53, 385Google Scholar
Gesicki, K., Zijlstra, A. A., Hajduk, M., & Szyszka, C. 2014, A&A, 566A, 48Google Scholar
Hajduk, M. et al. 2014, A&A, 567A, 15Google Scholar
Hajduk, M., van Hoof, P. A. M., & Zijlstra, A. A. 2015, A&A, 573A, 65Google Scholar
Herwig, F. 2005, ARA&A, 43, 435CrossRefGoogle Scholar
Jeffery, C. S. & Schönberner, D. 2006, A&A, 459, 885Google Scholar
Kimeswenger, S. & Barria, D. 2018, A&A, 616L, 2Google Scholar
Kondratyeva, L. N. 2005, Astronomical and Astrophysical Transactions, 24, 291CrossRefGoogle Scholar
Leisy, P. & Dennefeld, M. 2006, A&A, 456, 451Google Scholar
Miller-Bertolami, M. M. 2016, A&A, 588A, 25Google Scholar
Reindl, N. et al. 2017, MNRAS, 464, 51CrossRefGoogle Scholar
Vassiliadis, E. & Wood, P. R 1994, ApJS, 92, 125CrossRefGoogle Scholar
van Hoof, P. A. M. et al. 2007, A&A, 471L, 9Google Scholar
Zijlstra, A. A. et al. 2008, ApJ, 681, 1296CrossRefGoogle Scholar