Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T03:43:09.868Z Has data issue: false hasContentIssue false

The range of UV upturn strengths in early-type galaxies can be caused by dissolved metal-rich Globular Clusters

Published online by Cambridge University Press:  11 March 2020

Paul Goudfrooij*
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD21218, USA email: goudfroo@stsci.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I summarize the scenario by Goudfrooij (2018) in which the bulk of the ultraviolet (UV) upturn of giant early-type galaxies (ETGs) is due to helium-rich stellar populations that formed in massive metal-rich globular clusters (GCs) and subsequently dissolved in the strong tidal field in the central regions of the massive host galaxy. These massive GCs are assumed to show UV upturns similar to those observed recently in M87, the central galaxy in the Virgo cluster of galaxies. Data taken from the literature reveals a strong correlation between the strength of the UV upturn and the specific frequency of metal-rich GCs in ETGs. Adopting a Schechter function parametrization of GC mass functions, simulations of long-term dynamical evolution of GC systems show that this correlation can be explained by variations in the characteristic truncation mass Mc such that Mc increases with ETG luminosity in a way that is consistent with observed GC luminosity functions in ETGs. These findings suggest that the nature of the UV upturn in ETGs and the variation of its strength among ETGs are causally related to that of helium-rich populations in massive GCs, rather than intrinsic properties of field stars in ETGs.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bastian, N. & Lardo, C. 2018, ARAA, 56, 83CrossRefGoogle Scholar
Bohlin, R. C., Cornett, R. H., Hill, J. K., et al. 1985, ApJ (Letters), 298, L37CrossRefGoogle Scholar
Brown, T. M., Ferguson, H. C., Davidsen, A. F., & Dorman, B. 1997, ApJ, 482, 685CrossRefGoogle Scholar
Bureau, M., Jeong, H., Yi, S. K., et al. 2011, MNRAS, 414, 1887CrossRefGoogle Scholar
Buzzoni, A. & González-Lópezlira, R. A. 2008, ApJ, 686, 1007CrossRefGoogle Scholar
Carter, D., Pass, S., Kennedy, J., Karick, A. M., & Smith, R. J. 2011, MNRAS, 414, 3410CrossRefGoogle Scholar
Chung, C., Yoon, S.-J., & Lee, Y.-W. 2017, ApJ, 842, 91CrossRefGoogle Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2010, A&A, 516, A55Google Scholar
Code, A. A. & Welch, G. A. 1979, ApJ, 229, 95CrossRefGoogle Scholar
Goudfrooij, P. 2018, ApJ, 857, 16CrossRefGoogle Scholar
Goudfrooij, P. & Fall, S. M. 2016, ApJ, 833, 8CrossRefGoogle Scholar
Greggio, L. & Renzini, A. 1990, ApJ, 364, 35CrossRefGoogle Scholar
Johnson, L. C., Seth, A. C., Dalcanton, J. J., et al. 2017, ApJ, 839, 78CrossRefGoogle Scholar
Jordán, A., McLaughlin, D. E., Côté, P., et al. 2007, ApJS, 171, 101CrossRefGoogle Scholar
Li, H., Gnedin, O. Y., Gnedin, N. Y., et al. 2017, ApJ, 834, 69CrossRefGoogle Scholar
Milone, A. P., Marino, A. F., Renzini, A., et al. 2018, MNRAS, 481, 5098CrossRefGoogle Scholar
O’Connell, R. W. 1999, ARAA, 37, 603CrossRefGoogle Scholar
Park, J.-H. & Lee, Y.-W. 1997, ApJ, 476, 28CrossRefGoogle Scholar
Peacock, M. B., Zepf, S. E., Kundu, A., & Chael, J. 2017, MNRAS, 464, 713CrossRefGoogle Scholar
Peng, E. W., Jordán, A., Côté, P., et al. 2008, ApJ, 681, 197CrossRefGoogle Scholar
Schechter, P. 1976, ApJ, 203, 297CrossRefGoogle Scholar
Sohn, S. T., O’Connell, R. W., Kundu, A., et al. 2006, AJ, 131, 866CrossRefGoogle Scholar
Trujillo-Gomez, S., Reina-Campos, M., & Kruijssen, J. M. D. 2019, MNRAS, 488, 3972CrossRefGoogle Scholar
van Dokkum, P. G., Conroy, C., Villaume, A., Brodie, J. P., & Romanowsky, A. J. 2017, ApJ, 841, 68CrossRefGoogle Scholar
Yi, S., Demarque, P., & Oemler, A. 1997, ApJ, 486, 201CrossRefGoogle Scholar