Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-27T00:05:58.386Z Has data issue: false hasContentIssue false

Radial velocity variability in post-AGB stars: V448 Lac

Published online by Cambridge University Press:  30 December 2019

G. C. Van de Steene
Affiliation:
Royal Observatory of Belgium, Astronomy and Astrophysics, Ringlaan 3, Brussels, Belgium email: g.vandesteene@oma.be
B. J. Hrivnak
Affiliation:
Department of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383, USA email: bruce.hrivnak@valpo.edu
H. Van Winckel
Affiliation:
Instituut voor Sterrenkunde, K.U. Leuven University, Celestijnenlaan 200 D, B-3001 Leuven, Belgium email: hans.vanwinckel@kuleuven.ac.be
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To investigate the binary hypothesis in the formation of planetary nebulae, we have been doing long-term photometry and radial velocity (RV) monitoring of bright post-AGB stars which possess bipolar or ellipsoidal nebulae but no indication of a disk in their spectral energy distribution, indicative of a binary companion. RV’s are determined by cross correlating high-resolution spectra with a line mask. Stellar variability and companions both deform the cross correlation function (CCF) and induce periodic variations in the RV. To uniformly quantify the asymmetry of the CCF from a Gaussian, we propose to fit the CCF profile with a Gauss-Hermite series and determine all CCF parameters (RV, skewness, FWHM, and depth) in one single fit. We analyze the correlation and time series of these CCF parameters for V448 Lac and conclude that its RV variability is most likely due to stellar pulsation and not to an orbiting body.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Boissé, I., Bouchy, F., Hébrard, G., et al. 2011, A&A 528, 4Google Scholar
Delgado Mena, E., Lovis, C., Santos, N. C., et al. 2018, arXiv:180709608Google Scholar
Figueira, P., Santos, N.C., Pepe, F., et al. 2013, A&A 557, A93Google Scholar
Hrivnak, B. J., Lu, W., Sperauskas, J., et al. 2013, ApJ 766, 116CrossRefGoogle Scholar
Hrivnak, B.J., Van de Steene, G.C., Winckel, Van, et al. 2017, ApJ 846, 96CrossRefGoogle Scholar
Hrivnak, B.J., Van de Steene, G.C., Winckel, Van, et al. 2018, this volumeGoogle Scholar
Kochanek, C. S., Shappee, B. J., Stanek, K. Z., et al. 2017, PASP 129, 4502CrossRefGoogle Scholar
Manick, R., Van Winckel, H., Kamath, , et al. 2017, A&A 597, A129Google Scholar
Raskin, G., Van Winckel, H., Hensberge, , et al., 2011, A&A 526A, 69Google Scholar
Terlouw, J. P. & Vogelaar, M. G. R. 2015, Kapteyn packageGoogle Scholar
Queloz, D., Henry, G.W., Sivan, J. P., et al. 2001, A&A 379, 279Google Scholar
Van Winckel, H., Jorissen, A., Gorlova, N., et al. 2010, MmSAI 81, 1022Google Scholar
Zechmeister, M. & Kürster, M. 2009, A&A 496, 577Google Scholar