Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-02T01:06:24.208Z Has data issue: false hasContentIssue false

Prevalence of radio jets associated with quasar outflows and feedback

Published online by Cambridge University Press:  03 March 2020

Miranda E. Jarvis*
Affiliation:
Max-Planck Institut fûr Astrophysik, Karl-Schwarzschild-Str. 1, 85741Garching, Germany email: mjarvis@eso.org European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have identified that radio jets are commonly associated with “radiative mode” feedback in quasars. By performing a systematic multi-wavelength study of z < 0.2 quasars, we have found that 70–80% of our sample of ‘radio-quiet’ type 2 quasars, which host kpc-scale ionized gas outflows, exhibit radio jet structures. Here, we discuss our results on the pilot sample of 10 objects that combine high resolution (∼ 0.25 - 1 arcsec) radio imaging at 1-7 GHz with optical IFU observations. Our results demonstrate that it is extremely common for jets to be spatially and kinematically linked to kpc-scale ionized gas kinematics in such quasars. Therefore, radio jets may be an important driver of outflows during ‘radiative mode’ feedback, apparently blurring the lines between the traditional divisions of feedback modes.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Abazajian, K. N., Adelman-McCarthy, J. K., AguÌ^eros, M. A., et al. 2009, ApJS, 182, 543 CrossRefGoogle Scholar
An, T. & Baan, W. A. 2012, ApJ, 760, 77 Google Scholar
Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559 CrossRefGoogle Scholar
Bell, E. F. 2003, ApJ, 586, 794 CrossRefGoogle Scholar
Best, P. N. & Heckman, T. M. 2012, MNRAS, 421, 1569 CrossRefGoogle Scholar
Condon, J. J., Kellermann, K. I., Kimball, A. E., Ivezi´c, Ž., & Perley, R. A. 2013, ApJ, 768, 37 CrossRefGoogle Scholar
Cui, J., Xia, X.-Y., Deng, Z.-G., Mao, S., & Zou, Z.-L. 2001, AJ, 122, 63 CrossRefGoogle Scholar
Fabian, A. C. 2012, ARAA, 50, 455 CrossRefGoogle Scholar
Harrison, C. M., Alexander, D. M., Mullaney, J. R., & Swinbank, A. M. 2014, MNRAS, 441, 3306 CrossRefGoogle Scholar
Harrison, C. M., Thomson, A. P., Alexander, D. M., et al. 2015, ApJ, 800, 45 Google Scholar
Heckman, T. M., & Best, P. N. 2014, ARAA, 52, 589 Google Scholar
Jarvis, M. E. et al. 2019, MNRAS, 485, 2710 CrossRefGoogle Scholar
Leipski, C. & Bennert, N. 2006, A&A, 448, 165 Google Scholar
Mullaney, J. R., Alexander, D. M., Fine, S., et al. 2013, MNRAS, 433, 622 CrossRefGoogle Scholar
Noll, S., Burgarella, D., Giovannoli, E., et al. 2009, A&A, 507, 1793 Google Scholar
Xu, C., Livio, M., & Baum, S. 1999, AJ, 118, 1169 CrossRefGoogle Scholar
Zakamska, N. L. & Greene, J. E. 2014, MNRAS, 442, 784 CrossRefGoogle Scholar