Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-22T18:51:22.407Z Has data issue: false hasContentIssue false

Post-RGB and Post-AGB stars as tracers of binary evolution

Published online by Cambridge University Press:  30 December 2019

Devika Kamath*
Affiliation:
Department of Physics and Astronomy, Macquarie University, Sydney, Australia Astronomy, Astrophysics and Astrophotonics Research Centre, Macquarie University, Sydney, Australia email: devika.kamath@mq.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Binary interactions can alter the intrinsic properties of stars (such as: pulsation, mass-loss, photospheric chemistry, dust-formation, circumstellar envelope morphology etc.) and can even play a dominant role in determining its ultimate fate. While past studies have shown that binarity can end the AGB life of a star, recent studies have revealed that in specific cases binarity also pre-maturely terminate the RGB evolution. A characteristic feature of evolved binaries is the presence of a Keplerian circumbinary disc of gas and dust which plays a lead role in the evolution of the systems. In this article, I will review our advances in the research landscape of post-RGB and post-AGB binary stars, focussing on their observational properties, spectral energy distribution, photospheric chemistry, the evolution of their stable circumbinary discs, and the evolutionary connection between the enigmatic post-AGB/post-RGB binaries, and other systems whose primary component is a white dwarf.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Abate, C., Pols, O. R., Izzard, R. G., Mohamed, S. S., de Mink, S. E., 2013, A&A, 552, A26 Google Scholar
Aoki, W., Beers, T. C., Christlieb, N., Norris, J. E., Ryan, S. G., Tsangarides, S., 2007, ApJ, 655, 492 CrossRefGoogle Scholar
Bollen, D., Van Winckel, H., Kamath, D., 2017, A&A, 607, A60 Google Scholar
Bujarrabal, V., Alcolea, J., Van Winckel, H., Santander-Garca, M., Castro-Carrizo, A., 2013, A&A, 557, A104 Google Scholar
Bujarrabal, V., Castro-Carrizo, A., Winckel, H. V., Alcolea, J., Contreras, C. S., Santander-Garca, M., Hillen, M., 2018, A&A, 614, A58 Google Scholar
Chen, X., Han, Z., Tout, C. A., 2011, ApJ, 735, L31 CrossRefGoogle Scholar
Dermine, T., Jorissen, A., Siess, L., Frankowski, A., 2009, A&A, 507, 891 Google Scholar
Dermine, T., Izzard, R. G., Jorissen, A., Van Winckel, H., 2013, A&A, 551, A50 Google Scholar
Gezer, I., Van Winckel, H., Bozkurt, Z., De Smedt, K., Kamath, D., Hillen, M., Manick, R., 2015, MNRAS, 453, 133 CrossRefGoogle Scholar
Gielen, C., et al., 2011, A&A, 533, A99 Google Scholar
Gorlova, N., Van Winckel, H., Vos, J., Ostensen, R. H., Jorissen, A., Van Eck, S., Ikonnikova, N., 2014, ArXiv e-printsGoogle Scholar
Han, Z., Eggleton, P. P., Podsiadlowski, P., Tout, C. A., 1995, MNRAS, 277 CrossRefGoogle Scholar
Hillen, M., Kluska, J., Le Bouquin, J.-B., Van Winckel, H., Berger, J.-P., Kamath, D., Bujarrabal, V., 2016, A&A, 588 CrossRefGoogle Scholar
Ivanova, N., et al., 2013, A&ARv, 21, 59 Google ScholarPubMed
Izzard, R. G., Dermine, T., Church, R. P., 2010, A&A, 523, A10 Google Scholar
Izzard, R. G., Hall, P. D., Tauris, T. M., Tout, C. A., 2012, in IAU Symposium. pp 95102 CrossRefGoogle Scholar
Jones, D., Van Winckel, H., Aller, A., Exter, K., De Marco, O., 2017, A&A, 600, L9 Google Scholar
Jorissen, A., 2003, in Corradi R. L. M., Mikolajewska J., Mahoney T. J., eds, ASP Conf. Ser. Vol. 303, Symbiotic Stars Probing Stellar Evolution. p. 25 Google Scholar
Kamath, D., Wood, P. R., Van Winckel, H., 2014, MNRAS, 439, 2211 CrossRefGoogle Scholar
Kamath, D., Wood, P. R., Van Winckel, H., 2015, MNRAS, 454, 1468 CrossRefGoogle Scholar
Kamath, D., Wood, P. R., Van Winckel, H., Nie, J. D., 2016, A&A, 586, L5 Google Scholar
Kluska, J., Hillen, M., Van Winckel, H., et al. 2018, A&A, 616, A153 Google Scholar
Luri, X., et al., 2018, ArXiv e-printsGoogle Scholar
Maoz, D., Mannucci, F., Nelemans, G., 2014, ARA&A, 52, 107 CrossRefGoogle Scholar
Miszalski, B., Napiwotzki, R., Cioni, M.-R. L., Groenewegen, M. A. T., Oliveira, J. M., Udalski, A., 2011, A&A, 531 CrossRefGoogle Scholar
Munari, U., Sordo, R., Castelli, F., Zwitter, T., 2005, A&A, 442, 1127 Google Scholar
Nie, J. D., Wood, P. R., Nicholls, C. P., 2012, MNRAS, 423, 2764 CrossRefGoogle Scholar
Raskin, G., et al., 2011, A&A, 526, A69 Google Scholar
Sahai, R., Vlemmings, W. H. T., Nyman, L.-Å., 2017, ApJ, 841, 110 CrossRefGoogle Scholar
Toonen, S., Nelemans, G., 2013, A&A, 557, A87 Google Scholar
Van Winckel, H., 2003, ARA&A, 41, 391 CrossRefGoogle Scholar
Van Winckel, H., 2017, in Liu X., Stanghellini L., Karakas A., eds, IAU Symposium Vol. 323, Planetary Nebulae: Multi-Wavelength Probes of Stellar and Galactic Evolution. pp 231234 Google Scholar
Van Winckel, H., Waelkens, C., Waters, L. B. F. M., Molster, F. J., Udry, S., Bakker, E. J., 1998, A&A, 336 Google Scholar
Van Winckel, H., et al., 2009, A&A, 505, 1221 Google Scholar
Vassiliadis, E., Wood, P. R., 1994, ApJS, 92, 125 CrossRefGoogle Scholar
Venn, K. A., Puzia, T. H., Divell, M., Côté, S., Lambert, D. L., Starkenburg, E., 2014, ApJ, 791, 98 CrossRefGoogle Scholar
Waters, L. B. F. M., Trams, N. R., Waelkens, C., 1992, A&A, 262 Google Scholar
de Ruyter, S., Van Winckel, H., Maas, T., Lloyd Evans, T., Waters, L. B. F. M., Dejonghe, H., 2006, A&A, 448, 641 Google Scholar