Skip to main content Accessibility help
×
Home

Possibility to locate the position of the H2O snowline in protoplanetary disks through spectroscopic observations

  • Shota Notsu (a1) (a2), Hideko Nomura (a3), Catherine Walsh (a4), Mitsuhiko Honda (a5), Tomoya Hirota (a6), Eiji Akiyama (a6) and T. J. Millar (a7)...

Abstract

Observationally measuring the location of the H2O snowline is crucial for understanding the planetesimal and planet formation processes, and the origin of water on Earth. The velocity profiles of emission lines from protoplanetary disks are usually affected by Doppler shift due to Keplerian rotation and thermal broadening. Therefore, the velocity profiles are sensitive to the radial distribution of the line-emitting regions. In our work (Notsu et al. 2016, 2017), we found candidate water lines to locate the position of the H2O snowline through future high-dispersion spectroscopic observations. First, we calculated the chemical composition of the disks around a T Tauri star and a Herbig Ae star using chemical kinetics. We confirmed that the abundance of H2O gas is high not only in the hot midplane region inside the H2O snowline but also in the hot surface layer and the photodesorption region of the outer disk. The position of the H2O snowline in the Herbig Ae disk exists at a larger radius from the central star than that in the T Tauri disk. Second, we calculated the H2O line profiles and identified that H2O emission lines with small Einstein A coefficients (∼10−6 − 10−3 s−1) and relatively high upper state energies (∼ 1000K) are dominated by emission from the hot midplane region inside the H2O snowline, and therefore their profiles potentially contain information which can be used to locate the position of the H2O snowline. The wavelengths of the H2O lines which are the best candidates to locate the position of the H2O snowline range from mid-infrared to sub-millimeter, and the total line fluxes tend to increase with decreasing wavelengths. We investigated the possibility of future observations using the ALMA and mid-infrared high-dispersion spectrographs (e.g., SPICA/SMI-HRS). Since the fluxes of those identified lines from a Herbig Ae disk are stronger than those of a T Tauri disk, the possibility of a successful detection is expected to increase for a Herbig Ae disk.

Copyright

References

Hide All
Banzatti, A., Pontoppidan, K. M., Salyk, C., et al. 2017, ApJ, 834, 152
Blevins, S. M., Pontoppidan, K. M., Banzatti, A., et al. 2016, ApJ, 818, 22
Eistrup, C., Walsh, C., & van Dishoeck, E. F., 2016, A&A, 595, A83
Furuya, K., Aikawa, Y., Nomura, H., Hersant, F., & Wakelam, V., 2013, ApJ, 779, 11
Graedel, T. E., Langer, W. D., & Frerking, M. A., 1982, ApJS, 48, 321
Hayashi, C., 1981, Progress of Theoretical Physics Supplement, 70, 35
Hayashi, C., Nakazawa, K., & Nakagawa, Y. 1985, Protostars and Planets II, University of Arizona Press, 1100
Heinzeller, D., Nomura, H., Walsh, C., & Millar, T. J., 2011, ApJ, 731, 115
Hogerheijde, M. R., Bergin, E. A., Brinch, C., et al. 2011, Science, 334, 338
Hogerheijde, M. R. & van der Tak, F. F. S., 2000, A&A, 362, 697
Morbidelli, A., Bitsch, B., Crida, A., et al. 2016, Icarus, 267, 368
Morbidelli, A., Chambers, J., Lunine, J. I., et al. 2000, Meteoritics and Planetary Science, 35, 1309
Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S. N., & Walsh, K. J., 2012, Annual Review of Earth and Planetary Sciences, 40, 251
Nomura, H. & Millar, T. J., 2005, A&A, 438, 923
Nomura, H., Aikawa, Y., Tsujimoto, M., Nakagawa, Y., & Millar, T. J., 2007, ApJ, 661, 334
Notsu, S., Nomura, H., Ishimoto, D., Walsh, C., Honda, M., Hirota, T., & Millar, T. J., 2017a, ApJ, 836, 118
Notsu, S., Nomura, H., Ishimoto, D., Walsh, C., Honda, M., Hirota, T., & Millar, T. J., 2016, ApJ, 827, 113
Notsu, S., Nomura, H., Ishimoto, D., et al. 2015, Revolution in Astronomy with ALMA: The Third Year, ASP Conference Series, 499, 289
Öberg, K. I., Murray-Clay, R., & Bergin, E. A., 2011, ApJ, 743, L16
Oka, A., Nakamoto, T., & Ida, S., 2011, ApJ, 738, 141
Okuzumi, S., Tanaka, H., Kobayashi, H., & Wada, K., 2012, ApJ, 752, 106
Piso, A.-M. A., Öberg, K. I., Birnstiel, T., & Murray-Clay, R. A., 2015, ApJ, 815, 109
Podio, L., Kamp, I., Codella, C., et al. 2013, ApJ, 766, L5
Pontoppidan, K. M., Salyk, C., Blake, G. A., et al. 2010a, ApJ, 720, 887
Pontoppidan, K. M., Salyk, C., Blake, G. A., K&aumlufl, H. U., 2010b, ApJ, 722, L173
Ros, K. & Johansen, A., 2013, A&A, 552, A137
Rybicki, G. B. & Lightman, A. P. 1986, Radiative Processes in Astrophysics, by George B. Rybicki, Alan P. Lightman, pp. 400. ISBN 0-471-82759-2. Wiley-VCH, June 1986
Sato, T., Okuzumi, S., & Ida, S., 2016, A&A, 589, A15
Schöier, F. L., van der Tak, F. F. S., van Dishoeck, E. F., & Black, J. H., 2005, A&A, 432, 369
van Dishoeck, E. F., Bergin, E. A., Lis, D. C., & Lunine, J. I. 2014, Protostars and Planets VI, University of Arizona Press, 835
Walsh, C., Millar, T. J., & Nomura, H., 2010, ApJ, 722, 1607
Walsh, C., Millar, T. J., Nomura, H., et al. 2014a, A&A, 563, AA33
Walsh, C., Nomura, H., Millar, T. J., & Aikawa, Y., 2012, ApJ, 747, 114
Walsh, C., Nomura, H., & van Dishoeck, E., 2015, A&A, 582, A88
Woitke, P., Thi, W.-F., Kamp, I., & Hogerheijde, M. R., 2009b, A&A, 501, L5
Woodall, J., Agúndez, M., Markwick-Kemper, A. J., & Millar, T. J., 2007, A&A, 466, 1197
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed