Skip to main content Accessibility help
×
Home

Point Process Algorithm: A New Bayesian Approach for TPF-I Planet Signal Extraction

  • T. Velusamy (a1), K. A. Marsh (a1) and B. Ware (a1)

Abstract

TPF-I capability for planetary signal extraction, including both detection and spectral characterization, can be optimized by taking proper account of instrumental characteristics and astrophysical prior information. We have developed the Point Process Algorithm (PPA), a Bayesian technique for extracting planetary signals using the sine/cosine chopped outputs of a dual nulling interferometer. It is so-called because it represents the system being observed as a set of points in a suitably defined state space, thus providing a natural way of incorporating our prior knowledge of the compact nature of the targets of interest. It can also incorporate the spatial covariance of the exozodi as prior information which could help mitigate against false detections. Data at multiple wavelengths are used simultaneously, taking into account possible spectral variations of the planetary signals. Input parameters include the sigma of measurement noise and the a priori probability of the presence of a planet. The output can be represented as an image of the intensity distribution on the sky, optimized for the detection of point sources. Previous approaches by others to the problem of planet detection for TPF-I have relied on the potentially non-robust identification of peaks in a “dirty” image, usually a correlation map. Tests with synthetic data suggest that the PPA provides greater sensitivity to fainter sources than does the standard approach (correlation map + CLEAN), and will be a useful tool for optimizing the design of TPF-I.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Point Process Algorithm: A New Bayesian Approach for TPF-I Planet Signal Extraction
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Point Process Algorithm: A New Bayesian Approach for TPF-I Planet Signal Extraction
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Point Process Algorithm: A New Bayesian Approach for TPF-I Planet Signal Extraction
      Available formats
      ×

Copyright

MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Point Process Algorithm: A New Bayesian Approach for TPF-I Planet Signal Extraction

  • T. Velusamy (a1), K. A. Marsh (a1) and B. Ware (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.