Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-29T21:41:06.321Z Has data issue: false hasContentIssue false

PN populations in the local group and distant stellar populations

Published online by Cambridge University Press:  09 May 2016

Warren Reid*
Affiliation:
Department of Physics and Astronomy, Macquarie University Sydney, NSW, 2109, Australia email: warren.reid@outlook.com University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our understanding of galactic structure and evolution is far from complete. Within the past twelve months we have learnt that the Milky Way is about 50% wider than was previously thought. As a consequence, new models are being developed that force us to reassess the kinematic structure of our Galaxy. Similarly, we need to take a fresh look at the halo structure of external galaxies in our Local Group. Studies of stellar populations, star-forming regions, clusters, the interstellar medium, elemental abundances and late stellar evolution are all required in order to understand how galactic assembly has occurred as we see it. PNe play an important role in this investigation by providing a measure of stellar age, mass, abundances, morphology, kinematics and synthesized matter that is returned to the interstellar medium (ISM). Through a method of chemical tagging, halo PNe can reveal evidence of stellar migration and galactic mergers. This is an outline of the advances that have been made towards uncovering the full number of PNe in our Local Group galaxies and beyond. Current numbers are presented and compared to total population estimates based on galactic mass and luminosity. A near complete census of PNe is crucial to understanding the initial-to-final mass relation for stars with mass >1 to <8 times the mass of the sun. It also allows us to extract more evolutionary information from luminosity functions and compare dust-to-gas ratios from PNe in different galactic locations. With new data provided by the Gaia satellite, space-based telescopes and the rise of giant and extra-large telescopes, we are on the verge of observing and understanding objects such as PNe in distant galaxies with the same detail we expected from Galactic observations only a decade ago.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Arnaboldi, M., Freeman, K. C., & Méndez, R. H. 1996, ApJ, 472, 145Google Scholar
Arnaboldi, M., et al. 1998, ApJ, 507, 759CrossRefGoogle Scholar
Badenes, C., Maoz, D., & Ciardullo, R. 2015, ApJ, 804, 25Google Scholar
Bekki, K., 2008, MNRAS, 390L, 24Google Scholar
Bekki, K., 2008b, ApJ, 684L, 87Google Scholar
Buzzoni, A., Arnaboldi, M., & Corradi, R. L. M. 2006, MNRAS, 368, 877Google Scholar
Ciardullo, R., Jacoby, G., Ford, H. C., & Neill, J. D., 1989, ApJ, 339, 53Google Scholar
Ciardullo, R., et al. 2004, ApJ, 614, 167Google Scholar
Corradi, R. L. M., et al. 2005, A&A, 431, 555Google Scholar
Corradi, R. L. M., Kwitter, K. B., Balick, B., Henry, R. B. C., & Hensley, K. 2015, ApJ, 807, 181Google Scholar
Coccato, L., et al. 2009, MNRAS, 1249, 1283Google Scholar
Cortesi, A., Arnaboldi, M., Coccato, L., et al. 2013, A&A, 549, 115Google Scholar
Cui, W., Murante, G., & Monaco, P., 2014, MNRAS, 437, 816Google Scholar
Davidge, T. J., 2002, AJ, 124, 2012Google Scholar
Dolag, K., Murante, G., & Borgani, S., 2010, MNRAS, 405, 1544Google Scholar
Douglas, N. G., et al. 2007, ApJ, 664, 257Google Scholar
Drasković, D., Parker, Q. A., Reid, W. A., & Stupar, M., 2015, MNRAS, 452, 1402Google Scholar
Gonçalves, D., Teodorescu, A., Alver-Brito, A., et al. 2012a, MNRAS, 425, 2557Google Scholar
Gonçalves, D., Magrini, L., Martins, L. P., Teodorescu, A., & Quireza, C. 2012b, MNRAS, 419, 854Google Scholar
Gonçalves, D., Magrini, L., Teodorescu, A. M., & Carneiro, C. M. 2014, MNRAS, 444, 1705Google Scholar
Hernández-Martínez, L. & Peña, M. 2009, A&A, 495, 447Google Scholar
Jacoby, G. H. & Lesser, M. P. 1981, AJ, 86, 185Google Scholar
Jacoby, G. H. & De Marco, O. 2002, AJ, 123, 269Google Scholar
Jacoby, G., et al. 2013, ApJ, 769, 10CrossRefGoogle Scholar
Kniazev, A. Y., Pustilnik, S. A., Zucker, D. B. 2008, MNRAS, 384, 1045CrossRefGoogle Scholar
Larsen, S. S. 2008, A&A, 477, L17Google Scholar
Longobardi, A., Arnaboldi, M., & Gerhard, O., Hanuschik, R. 2015a, A&A, 579A, 135Google Scholar
Longobardi, A., Arnaboldi, M., Gerhard, O., & Mihos, J. C. 2015b, A&A, 579L, 3Google Scholar
Magrini, L., Corradi, R. L. M., Mampaso, A., & Perinotto, M., 2000, A&A, 355, 713Google Scholar
Magrini, L., Corradi, R. L. M., Greimel, R., Leisy, P., et al. 2003, A&A, 407, 51Google Scholar
Magrini, L., Corradi, R. L. M., Greimel, R., Leisy, P., et al. 2005, MNRAS, 361, 517Google Scholar
Merrett, H.et al. 2006, Procedings of the ESO workshp “Planetary Nebulae beyond the Milky Way”, Eds. Stanghellini, L., Walsh, J.R., Douglas, N.G., p. 281Google Scholar
Magrini, L., Corradi, R. L. M., Greimel, R., Leisy, P., et al. 2005, MNRAS, 361, 517Google Scholar
McNeil, E. K., Arnaboldi, M., & Freeman, K. C. 2010, A&A, 518, A44Google Scholar
McNeil-Moylan, E. K., Freeman, K. C., Arnaboldi, M., & Gerhard, O. E. 2012, A&A, 539, A11Google Scholar
Méndez, R. H.et al. 2001, ApJ, 563, 135Google Scholar
Napolitano, N. R., et al. 2004, in: Ryder, S.D., Pisano, D.J., Walker, M.A. & Freeman, K.C. (eds.), IAU Symp. 220 Dark Matter (Astron. Soc. Pac.), San Francisco, p. 173Google Scholar
Napolitano, N. R., et al. 2009, MNRAS, 393, 329CrossRefGoogle Scholar
Noordermeer, E., et al. 2008, MNRAS, 384, 943Google Scholar
Parker, Q. A., Acker, A., Frew, D. J., et al. 2006, MNRAS, 373, 79Google Scholar
Parker, Q. A., Bojici, I., Frew, D., Acker, A., & Ochsenbein, F., 2015, AAS, 22510806PGoogle Scholar
Peña, M., Richer, M. G., & Stasiñska, G. 2007, A&A, 466, 75Google Scholar
Peng, E. W., Ford, H. C., & Freeman, K. C. 2004, ApJ, 602, 685Google Scholar
Reid, W. A. & Parker, Q. A. 2006, MNRAS, 373, 521Google Scholar
Reid, W. A. & Parker, Q. A. 2010, MNRAS, 405, 1349Google Scholar
Reid, W. A. & Parker, Q. A. 2013, MNRAS, 436, 604Google Scholar
Reid, W. A. 2012, in Manchado, A., Stanghellini, L., Schoenberner, D., (eds.), IAU Symp. 283 Planetary Nebulae: An eye to the Future (Cambridge Univ. Press), Cambridge, p. 227Google Scholar
Reid, W. A. 2014, MNRAS, 438, 2642CrossRefGoogle Scholar
Reitzel, D. B., Guhathakurta, P., & Gould, A., 1998, AJ, 116, 707Google Scholar
Rodríguez-González, A. & Hernández-Martínez, L., et al. 2015, A&A, 575, 1Google Scholar
Romanowsky, A. J., et al. 2003, Sci, 301, 1696Google Scholar
Sarzi, M., Mamon, G. A., Cappellari, M., et al. 2011, MNRAS, 415, 2832Google Scholar
Saviane, I., Exter, K., Tsamis, Y., Gallart, C., & Péquignot, D. 2009, A&A, 494, 515Google Scholar
Teodorescu, A. M., Méndez, R. H., Saglia, R. P., et al. 2005, ApJ, 635, 290Google Scholar
Teodorescu, A. M., Mendez, R. H., Bernardi, F., et al. 2011, ApJ, 736, 65Google Scholar
Tremblay, B., Merrit, D., & Williams, T. B. 1995, ApJ, 443, 149Google Scholar
Ventimiglia, G., Arnaboldi, M., & Gerhard, O., 2011, A&A, 528, A24Google Scholar
Walsh, J. R., Rejkuba, M., Walton, N. A. 2015, A&A, 574A, 109Google Scholar
Zijlstra, A. A., Gesicki, K., Walsh, J. R., et al. 2006, MNRAS, 369, 875Google Scholar