Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-29T04:59:42.297Z Has data issue: false hasContentIssue false

Planetary nebulae in the (extra)-galactic context: Probing chemical evolution in star-forming galaxies

Published online by Cambridge University Press:  30 December 2019

Letizia Stanghellini*
Affiliation:
National Optical Astronomy Observatory 950 N. Cherry Avenue Tucson, Arizona 85719 (USA) email: lstanghellini@noao.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The populations of planetary nebulae (PNe) probe metallicity and chemical content (and its evolution) of the parent galaxy, giving clues to galaxy formation and evolution. This sub-field of extra-galactic PN research has been particularly active in the recent years. Comparison of data and models yielded estimates of global cosmic enrichment and provided constraints to galaxy formation history. In external spiral galaxies, the chemical contents of PNe and H II regions can be compared to disclose possible evolution of the radial metallicity gradient, which is, in turn, a powerful constraint to galactic chemical evolutionary models. In the Milky Way, recent PN progenitor dating and new chemical abundances offer an updated look into our own Galaxy. Collectively, Galactic and extra-galactic radial metallicity gradients from emission-line probes (PNe and H II regions) can be compared to have a cosmological outlook on galactic evolution.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Aniyan, S., Freeman, K. C., Arnaboldi, M., et al. 2018, MNRAS, 476, 1909 10.1093/mnras/sty310CrossRefGoogle Scholar
Balser, D. S., Rood, R. T., Bania, T. M., & Anderson, L. D. 2011, ApJ, 738, 27 10.1088/0004-637X/738/1/27CrossRefGoogle Scholar
Bresolin, F. 2017, Planetary Nebulae: Multi-Wavelength Probes of Stellar and Galactic Evolution, 323, 237 Google Scholar
Cresci, G., Mannucci, F., Maiolino, R., et al. 2010, Nature, 467, 811 10.1038/nature09451CrossRefGoogle Scholar
Delgado-Inglada, G., Rodrguez, M., Peimbert, M., Stasińska, G., & Morisset, C. 2015, MNRAS, 449, 1797 10.1093/mnras/stv388CrossRefGoogle Scholar
Gibson, B. K., Pilkington, K., Brook, C. B., Stinson, G. S., & Bailin, J. 2013, A&A, 554, A47 Google Scholar
Jones, T., Ellis, R. S., Richard, J., & Jullo, E. 2013, ApJ, 765, 48 10.1088/0004-637X/765/1/48CrossRefGoogle Scholar
Magrini, L., Stanghellini, L., & Villaver, E. 2009, ApJ, 696, 729 10.1088/0004-637X/696/1/729CrossRefGoogle Scholar
Magrini, L., Stanghellini, L., Corbelli, E., Galli, D., & Villaver, E. 2010, A&A, 512, A63 Google Scholar
Magrini, L., Coccato, L., Stanghellini, L., Casasola, V., & Galli, D. 2016, A&A, 588, A91 Google Scholar
Sánchez, S. F., Rosales-Ortega, F. F., Iglesias-Páramo, J., et al. 2014, A&A, 563, A49 Google Scholar
Sanduleak, N., MacConnell, D. J., & Philip, A. G. D. 1978, PASP, 90, 621 10.1086/130397CrossRefGoogle Scholar
Stanghellini, L., Walsh, J. R., & Douglas, N. G. 2006, Planetary Nebulae Beyond the Milky Way10.1007/11604792CrossRefGoogle Scholar
Stanghellini, L., Magrini, L., Villaver, E., & Galli, D. 2010, A&A, 521, A3 Google Scholar
Stanghellini, L., Magrini, L., Casasola, V., & Villaver, E. 2014, A&A, 567, A88 Google Scholar
Stanghellini, L., Peña, M., & Méndez, R. 2016, IAU Focus Meeting, 29, 3 Google Scholar
Stanghellini, L., & Haywood, M. 2018, ApJ, 862, 45 10.3847/1538-4357/aacaf8CrossRefGoogle Scholar
Ventura, P., Stanghellini, L., Dell’Agli, F., & García-Hernández, D. A. 2017, MNRAS, 471, 4648 10.1093/mnras/stx1907CrossRefGoogle Scholar
Yuan, T.-T., Kewley, L. J., Swinbank, A. M., Richard, J., & Livermore, R. C. 2011, ApJL, 732, L14 10.1088/2041-8205/732/1/L14CrossRefGoogle Scholar