Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-18T16:59:11.753Z Has data issue: false hasContentIssue false

Photodissociation processes of Bisanthenquinone cation

Published online by Cambridge University Press:  04 September 2018

Tao Chen
Affiliation:
Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, 10691, Stockholm, Sweden Leiden University, Leiden Observatory, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands
Junfeng Zhen
Affiliation:
Leiden University, Leiden Observatory, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, P.O. Box 9513, 2300 RA Leiden, The Netherlands email: chen@strw.leidenuniv.nl
Ying Wang
Affiliation:
Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, 10691, Stockholm, Sweden
Harold Linnartz
Affiliation:
Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, P.O. Box 9513, 2300 RA Leiden, The Netherlands email: chen@strw.leidenuniv.nl
Alexander G. G. M. Tielens
Affiliation:
Leiden University, Leiden Observatory, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A systematic study, using ion trap time-of-flight mass spectrometry, is presented for the photo-dissociation processes of Bisanthenquinone (Bq) cations, C28H12O2+, a ketone substituted Polycyclic Aromatic Hydrocarbon (PAH). The Bq cation fragments through sequential loss of the two neutral carbonyl (CO) units upon laser (626nm) irradiation, resulting in a PAH-like derivative C26H12+. Upon further irradiation, C26H12+ exhibits both stepwise dehydrogenation and C2/C2H2 loss fragmentation channels. Quantum chemistry calculations reveal a detailed picture for the first CO-loss, which involves a transition state with a barrier of ∼ 3.4 eV, which is lower than the energy required for the lowest H-loss pathway (∼ 5.0 eV). The barrier for the second CO-loss is higher (∼ 4.9 eV). The subsequent loss of this unit changes the Bq geometry from a planar to a bent one. It is concluded that the photodissociation mechanism of the substituted PAH cations studied here is site selective in the substituted subunit. This work also shows that an acetone substituted PAH cation is not photo-stable upon irradiation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Tielens, G. G. M., Annu. Rev. Astron. Astrophys., 2008, 46, 289.Google Scholar
Tielens, A. G. G. M., The Physics and Chemistry of the Interstellar Medium, Cambridge Univ Press, Cambridge, UK, 2005.Google Scholar
Bernstein, M. P., Elsila, J. E., Dworkin, J. P., Sandford, S. A., Allamandola, L. J. & Zare, R. N., Astrophys. J., 2002, 576, 1115.Google Scholar
Holm, A. I. S., Johansson, H. A. B., Cederquist, H., & Zettergren, H., J. Chem. Phys., 2011, 134, 044301.Google Scholar
Chen, T., Gatchell, M., Stockett, M. H., Delaunay, R., Domaracka, A., Micelotta, E. R., Tielens, A. G. G. M., Rousseau, P., Adoui, L., Huber, B. A., Schmidt, H. T., Cederquist, H., & Zettergren, H., J. Chem. Phys., 2015, 142, 144305.Google Scholar
Berné, O., & Tielens, A. G. G. M., Proc. Natl. Acad. Sci., & USA, 2012, 109, 401.Google Scholar
Zhen, J., Castellanos, P., Paardekooper, D. M., Linnartz, H., & Tielens, A. G. G. M., Astrophys. J. Lett., 2014, 797, L30.Google Scholar
Walsh, R., Chem. Soc. Rev., 2008, 37, 686.Google Scholar
Jochims, H. W., Baumgartel, H., & Leach, S., Astrophys. J., 1999, 512, 500.Google Scholar
Rapacioli, M., Simon, A., Marshall, C. C. M., Cuny, J., Kokkin, D., Spiegelman, F., & Joblin, C., J. Phys. Chem. A, 2015, 119, 12845.Google Scholar
Zhen, J., Castellanos, P., Linnartz, H., & Tielens, A. G. G. M., Mol. Astrophys., 2016, 5, 1.Google Scholar
Lifshitz, C., Int. Rev. Phys. Chem., 1997, 16, 113.Google Scholar
Zhen, J., Paardekooper, D. M., Candian, A., Linnartz, H., & Tielens, A. G. G. M., Chem. Phys. Lett., 2014, 592, 211.Google Scholar
Doroshenko, M. V., & Cotter, R. J., Rapid Commun. Mass Spectrum., 1996, 10, 65.Google Scholar
Scott, A. P., & Radom, L., J. Phys. Chem., 1996, 100, 16502.Google Scholar
Beynon, J. H., Lester, G. R., & Williams, A. E., J. Phys. Chem., 1959, 63, pp 1861Google Scholar
de Haas, A. J., Oomens, J., & Bouwmana, J., Phys. Chem. Chem. Phys., 2017, in press, DOI: 10.1039/C6CP08349H.Google Scholar