Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-16T19:31:31.406Z Has data issue: false hasContentIssue false

Optical interferometry of High-Mass X-ray Binaries: Resolving wind, disk and jet outflows at sub-milliarcsecond scale

Published online by Cambridge University Press:  30 December 2019

Idel Waisberg
Max Planck Institute for extraterrestrial Physics, Giessenbachstr., 85748 Garching, Germany email:
Jason Dexter
Max Planck Institute for extraterrestrial Physics, Giessenbachstr., 85748 Garching, Germany email:
P.-O. Petrucci
Univ. Grenoble Alpes, CNRS, IPAG Box 515, F-38000 Grenoble, France
Guillaume Dubus
Univ. Grenoble Alpes, CNRS, IPAG Box 515, F-38000 Grenoble, France
Karine Perraut
Univ. Grenoble Alpes, CNRS, IPAG Box 515, F-38000 Grenoble, France
Rights & Permissions [Opens in a new window]


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Because of their small angular size < 1 mas, spatial information on High-mass X-ray binaries (HMXB) has typically been inferred from photometry or spectroscopy. Optical interferometry offers the possibility to spatially resolve such systems, but has been traditionally limited to bright targets or low spectral resolution. The VLTI instrument GRAVITY, working in the near-infrared K band, achieves unprecedented precision in differential interferometric quantities at high spectral resolution, allowing to study HMXBs through the lens of optical interferometry for the first time. We present GRAVITY observations on two X-ray binaries: the microquasar SS 433 and the supergiant HMXB BP Cru. The former is the only known steady super-Eddington accretor in the Galaxy and is in a unique stage of binary evolution, with probable ties to at least part of the ULX population. With GRAVITY, we resolve its massive winds and optical baryonic jets for the first time, finding evidence for powerful equatorial outflows and photoionization as the main heating process along the jets. BP Cru harbors an X-ray pulsar accreting from the wind of its early-blue hypergiant companion Wray 977. The GRAVITY observations resolve the inner parts of the stellar wind and allow probing the influence of the orbiting pulsar on the circumstellar environment.

Contributed Papers
© International Astronomical Union 2019 


GRAVITY is developed in a collaboration by the Max Planck Institute for Extraterrestrial Physics, LESIA of Paris Observatory and IPAG of Universit Grenoble Alpes / CNRS, the Max Planck Institute for Astronomy, the University of Cologne, the Centro Multidisciplinar de Astrofısica Lisbon and Porto, and the European Southern Observatory.


Begelman, M. C., Sarazin, C. L., Hatchett, S. P., McKee, C. F., & Arons, J. 1980, ApJ, 238, 722 10.1086/158029CrossRefGoogle Scholar
Blandford, R. D. & Payne, D. G., 1982, MNRAS, 199, 883 10.1093/mnras/199.4.883CrossRefGoogle Scholar
Blondin, J. M. 1997, ApJ, 435, 756 10.1086/174853CrossRefGoogle Scholar
Blundell, K. M., Bowler, M. G., & Schmidtobreick, L. 2008, ApJ, 678, L47 10.1086/588027CrossRefGoogle Scholar
Blundell, K. M., Mioduszewski, A. J., Muxlow, T. W. B., Podsiadlowski, P. & Rupen, M. P., 2001, ApJ, 562, L79 10.1086/324573CrossRefGoogle Scholar
Borisov, N. V. & Fabrika, S. N. 1987, Soviet Astron. Letters, 13, 200 Google Scholar
Bowler, M. G. 2010, A&A, 521, A81 Google Scholar
Brown, J. C., Cassinelli, J. P., & Collins, II, G. W., 1991, ApJ, 378, 307 10.1086/170432CrossRefGoogle Scholar
Cechura, J. & Hadrava, P. 2015, A&A, 575, A5 Google Scholar
Cherepashchuk, A. M., Postnov, K. A., & Belinski, A. A., 2018, MNRAS, 479, 4844 10.1093/mnras/sty1853CrossRefGoogle Scholar
Davidson, K. & McCray, R., 1980, ApJ, 241, 1082 10.1086/158423CrossRefGoogle Scholar
Fabian, A. C. & Rees, M. J. 1979, MNRAS, 187, 13P 10.1093/mnras/187.1.13PCrossRefGoogle Scholar
Fabrika, S. 2004 Space Sci. Revs, 12, 1 Google Scholar
Fabrika, S. N. & Borisov, N. V., 1987, Soviet Astron. Letters, 13, 279 Google Scholar
Fabrika, S. N. & Bychkova, L. V., 1990, A&A, 240, L5 Google Scholar
Filippenko, A. V., Romani, R. W., Sargent, W. L. W., & Blandford, R. D., 1988, AJ, 96, 242 10.1086/114806CrossRefGoogle Scholar
Fuchs, Y., Koch Miramond, L., & Ábrahám, P. 2006, A&A, 445, 1041 Google Scholar
Collaboration, Gravity, Abuter, R., Accardo, M., et al. 2017a, A&A, 602, A94 Google Scholar
Gravity Collaboration, Petrucci, P.-O., Waisberg, I., et al., 2017b, A&A, 602, L11 Google Scholar
Hillier, D. J. & Miller, D. L. 1998, ApJ, 496, 407 10.1086/305350CrossRefGoogle Scholar
Illarionov, A. F. & Sunyaev, R. A. 1975, A&A, 39, 185 Google Scholar
Kaper, L., van der Meer, A. & Najarro, F. 2006, A&A, 457, 595 Google Scholar
Leahy, D. & Kostka, M. 2008, MNRAS, 384, 747 10.1111/j.1365-2966.2007.12754.xCrossRefGoogle Scholar
Margon, B., Ford, H. C., Grandi, S. A. & Sone, R. P. S. 1979, ApJ, 233, L63 10.1086/183077CrossRefGoogle Scholar
Mirabel, I. F. & Rodriguez, L. F. 1994, Nature, 371, 46 10.1038/371046a0CrossRefGoogle Scholar
Paragi, Z., Vermeulen, R. C., Fejes, I., et al., 1999, A&A, 348, 910 Google Scholar
Perez, M., S. & Blundell, K. M. 2009, MNRAS, 397, 849 10.1111/j.1365-2966.2009.14979.xCrossRefGoogle Scholar
Robinson, E. L., Froning, C. S., Jae, D. T. et al., 2017, ApJ, 841, 79 10.3847/1538-4357/aa6f0cCrossRefGoogle Scholar
Vermeulen, R. C., Schilizzi, R. T., Spencer, R. E. et al. 1993, A&A, 270, 177 Google Scholar
Waisberg, I., Dexter, J., Pfuhl, O. et al. 2017, ApJ, 844, 72 10.3847/1538-4357/aa79f1CrossRefGoogle Scholar