Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T01:35:27.799Z Has data issue: false hasContentIssue false

The onset of star formation 250 million years after the Big Bang

Published online by Cambridge University Press:  10 June 2020

Takuya Hashimoto*
Affiliation:
Department of Environmental Science and Technology, Faculty of Design Technology, Osaka Sangyo University, 3-1-1, Nagaito, Daito, Osaka574-8530, Japan National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo181-8588, Japan email: thashimoto@est.osaka-sandai.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this IAU symposium, we present results of our recent paper, Hashimoto et al. (2018a) focusing on its spectral energy distribution modeling. We present spectroscopic observations of MACS1149-JD1, a gravitationally lensed galaxy originally discovered by Zheng et al. (2012) via the dropout technique. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we detect an emission line of doubly ionized oxygen, [Oiii] 88 μm, at a redshift of 9.1096±0.0006. This precisely determined redshift indicates that the red rest-frame optical colour observed with the Spitzer Space Telescope arises from a dominant stellar component that formed about 250 million years after the Big Bang, corresponding to a redshift of about 15. MACS1149-JD1 clearly demonstrates the importance and power of spectral energy distribution modeling to understand the earliest star formation history of the Universe.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Hashimoto, T., Laporte, N., Mawatari, K., Ellis, R. S., Inoue, A. K., Zackrisson, E., Roberts-Borsani, G., Zheng, W., et al. 2018, Nature, 557, 392CrossRefGoogle Scholar
Zheng, W., Postman, M., Zitrin, A., Moustakas, J., Shu, X., Jouvel, S., Host, O., Molino, A., et al. 2012, Nature, 489, 406CrossRefGoogle Scholar
Inoue, A. K., Tamura, Y., Matsuo, H., Mawatari, K., Shimizu, I., Shibuya, T., Ota, K., Yoshida, N., et al. 2016, Science, 352, 1559CrossRefGoogle Scholar
Carniani, S., Maiolino, R., Pallottini, A., Vallini, L., Pentericci, L., Ferrara, A., Castellano, M., Vanzella, E., et al. 2017, A&A, 605, A42Google Scholar
Laporte, N., Ellis, R. S., Boone, F., Bauer, F., Quénard, D., Roberts-Borsani, G., Pelló, R., Pérez-Fournon, I., et al. 2017, ApJL, 837, L21CrossRefGoogle Scholar
Marrone, D. P., Spilker, J. S., Hayward, C. C., Vieira, J. D., Aravena, M., Ashby, M. L. N., Bayliss, M. B., Béthermin, M., et al. 2018, Nature, 553, 5110.1038/nature24629CrossRefGoogle Scholar
Hashimoto, T., Inoue, A. K., Mawatari, K., Tamura, Y., Matsuo, H., Furusawa, H., Harikane, Y., Shibuya, T., et al. 2018, submitted to PASJ, arXiv:1806.00486Google Scholar
Hashimoto, T., Inoue, A. K., Tamura, Y., Matsuo, H., Mawatari, K., & Yamaguchi, Y. 2018, submitted to PASJ, arXiv:1811.00030Google Scholar
Tamura, Y., Mawatari, K., Hashimoto, T., Inoue, A. K., Zackrisson, E., Christensen, L., Binggeli, C., Matsuda, Y., et al. 2018, submitted to ApJ, arXiv:1806.04132Google Scholar
Walter, F., Riechers, D., Novak, M., Decarli, R., Ferkinhoff, C., Venemans, B., Bañados, E., Bertoldi, F., et al. 2018, ApJ, 869L, 2210.3847/2041-8213/aaf4faCrossRefGoogle Scholar
Hoag, A., Bradač, M., Brammer, G., Huang, K.-H., Treu, T., Mason, C. A., Castellano, M., Di Criscienzo, M., et al. 2018, ApJ, 854, 3910.3847/1538-4357/aaa9c2CrossRefGoogle Scholar
Zheng, W., Zitrin, A., Infante, L., Laporte, N., Huang, X., Moustakas, J., Ford, H. C., Shu, X., et al. 2017, ApJ, 836, 210CrossRefGoogle Scholar
Mawatari, K., Yamada, T., Fazio, G. G., Huang, J.-S., & Ashby, M. L. N. 2016, PASJ, 68, 4610.1093/pasj/psw041CrossRefGoogle Scholar
Inoue, A. K. 2011, MNRAS, 415, 2920CrossRefGoogle Scholar
Rocca-Volmerange, B., Hilberer, A., & Fioc, M., 2018, submitted to A&A arXiv:1812.04283Google Scholar