Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T01:54:03.841Z Has data issue: false hasContentIssue false

On the correlation of the abundances of HNCO and NH2CHO: Advantages of solid para-H2 to study astrochemical H-atom addition and abstraction reactions

Published online by Cambridge University Press:  12 October 2020

György Tarczay
Affiliation:
HAS-ELTE Laboratory Astrochemistry Lendület Research Group, Pázmány P. S. 1/a, Budapest, 1117, Hungary ELTE Eötvös Loránd University, Lab. of Molecular Spectroscopy, Institute of Chemistry, Pázmány P. S. 1/a, Budapest, 1117, Hungary
Karolina Haupa
Affiliation:
Dept. of Applied Chemistry and Inst. of Molecular Science, National Chiao Tung University, Hsinchu, 30010, Taiwan
Yuan-Pern Lee
Affiliation:
Dept. of Applied Chemistry and Inst. of Molecular Science, National Chiao Tung University, Hsinchu, 30010, Taiwan Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan emails: tarczay@caesar.elte.hu, karolina.haupa@gmail.com, yplee@nctu.edu.tw
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In dense interstellar clouds that are shielded from high-energy radiation (e.g., UV photons or cosmic rays), H-atom addition and abstraction reactions that take place on grain surfaces play principal roles in the synthesis or decomposition of complex organic molecules (COMs). These reactions are extensively investigated with laboratory experiments by bombarding astrophysical analogue ices with a beam of low-temperature H atoms. Here we demonstrate that, although 2-4 K solid para-H2 does not represent a typical environment of the surface of interstellar grains, para-H2 matrix isolation combined with IR spectroscopy is a complementary tool to sensitively detect astrochemical hydrogenation and dehydrogenation processes.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bahou, M., Das, P., Lee, Y.-F., Wu, Y.-J, & Lee, Y.-P. 2014, PCCP, 16, 2200Google Scholar
Bianchi, E. et al. 2018, MNRAS, 483, 1850CrossRefGoogle Scholar
Bisschop, S. E., Jørgensen, J. K., van Dishoeck, E. F., & de Wachter, E. B. M. 2007, A&A, 465, 913Google Scholar
Biver, N. et al. 2018, A&A, 566, L5Google Scholar
Cazaux, S. et al. 2019, ApJ, 875, 27CrossRefGoogle Scholar
Chuang, K.-J., Fedoseev, G., Ioppolo, S., van Dishoeck, E. F., & Linnartz, H. 2016, MNRAS, 455, 1702CrossRefGoogle Scholar
Coutens, A. et al. 2016, A&A, 590, L6Google Scholar
Fushitani, M. & Momose, T. 2003, Low Temp. Phys., 29, 740CrossRefGoogle Scholar
de Grotthuss, C. J. T. 1806, Ann. Chim., 58, 54Google Scholar
Haupa, K., Tarczay, G., & Lee, Y-.P. 2019, J. Am. Chem. Soc., 141, 11614CrossRefGoogle Scholar
Jones, M. B., Bennett, C. J., & Kaiser, R. I. 2011, ApJ, 734, 78CrossRefGoogle Scholar
López-Sepulcre, et al. 2015, MNRAS, 449, 2438Google Scholar
Mennella, V., Hornekær, L., Thrower, J., & Accolla, M. 2012, ApJL, 745, L2CrossRefGoogle Scholar
Noble, J. A., Theule, P., Congiu, E., Dulieu, F., Bonnin, M., Bassas, A., Duvernay, F., Danger, G., & Chiavassa 2015, A&A, 576, A91Google Scholar
Raston, P. L. & Anderson, D. T. 2006, PCCP, 14, 3124CrossRefGoogle Scholar
Rauls, E. & Hornekær, L. 2008, ApJ, 679, 531CrossRefGoogle Scholar
Rubin, R. H., Swenson, G. W. Jr, Benson, R. C., Tigelaar, H. L., & Flygare, W. H. 1971, ApJL, 169, L39CrossRefGoogle Scholar