Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-28jzs Total loading time: 0.463 Render date: 2021-03-01T22:59:26.138Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Observational signatures for depletion in the Spite plateau: solving the cosmological Li discrepancy?

Published online by Cambridge University Press:  23 April 2010

Jorge Meléndez
Affiliation:
Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal email: jorge@astro.up.pt
Luca Casagrande
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, Postfach 1317, D-85741 Garching, Germany
Iván Ramírez
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, Postfach 1317, D-85741 Garching, Germany
Martin Asplund
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, Postfach 1317, D-85741 Garching, Germany
William J. Schuster
Affiliation:
Observatorio Astronómico Nacional, UNAM, Apartado Postal 877, Ensenada, BC, CP 22800, Mexico
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

We present Li abundances for 73 stars in the metallicity range −3.5 < [Fe/H] < −1.0 using improved IRFM temperatures (Casagrande et al. 2010) with precise E(B-V) values obtained mostly from interstellar NaI D lines, and high-quality equivalent widths (σEW ~ 3%). At all metallicities we uncover a fine-structure in the Li abundances of Spite plateau stars, which we trace to Li depletion that depends on both metallicity and mass. Models including atomic diffusion and turbulent mixing seem to reproduce the observed Li depletion assuming a primordial Li abundance ALi = 2.64 dex (MARCS models) or 2.72 (Kurucz overshooting models), in good agreement with current predictions (ALi = 2.72) from standard BBN. We are currently expanding our sample to have a better coverage of different evolutionary stages at the high and low metallicity ends, in order to verify our findings.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Aoki, W. et al. 2009, ApJ, 698, 1803CrossRefGoogle Scholar
Asplund, M., Lambert, D. L., Nissen, P. E., Primas, F., & Smith, V. V. 2006, ApJ, 644, 229CrossRefGoogle Scholar
Asplund, M. & Meléndez, J. 2008, First Stars III, 990, 342Google Scholar
Boesgaard, A. M., Stephens, A., & Deliyannis, C. P. 2005, ApJ, 633, 398CrossRefGoogle Scholar
Bonifacio, P. et al. 2007, A&A, 462, 851Google Scholar
Casagrande, L., Ramírez, I., Meléndez, J., Bessell, M., & Asplund, M. 2010, A&A, submittedGoogle Scholar
Charbonnel, C. & Primas, F. 2005, A&A, 442, 961Google Scholar
Coc, A., Olive, K. A., Uzan, J.-P., & Vangioni, E. 2009, Phys. Rev. D., 79, 103512CrossRefGoogle Scholar
Cyburt, R. H., Fields, B. D., & Olive, K. A. 2008, J. Cosmology & Astro-Particle Phys., 11, 12CrossRefGoogle Scholar
Gustafsson, B., Edvardsson, B., Eriksson, K. et al. 2008, A&A, 486, 951Google Scholar
Hosford, A., Ryan, S. G., García Pérez, A. E., Norris, J. E., & Olive, K. A. 2009, A&A, 493, 601Google Scholar
Jedamzik, K. & Pospelov, M. 2009, New Journal of Physics, 11, 105028CrossRefGoogle Scholar
Kohri, K. & Santoso, Y. 2009, Phys. Rev. D., 79, 043514CrossRefGoogle Scholar
Korn, A. J. et al. 2006, Nature, 442, 657CrossRefGoogle Scholar
Lind, K., Primas, F., Charbonnel, C., Grundahl, F., & Asplund, M. 2009, A&A, 503, 545Google Scholar
Meléndez, J. & Ramírez, I. 2004, ApJ (Letters), 615, L33CrossRefGoogle Scholar
Meléndez, J., Asplund, M., Gustafsson, B., & Yong, D. 2009, ApJ (Letters), 704, L66CrossRefGoogle Scholar
Meléndez, J., Casagrande, L., Ramírez, I., & Asplund, M., & Schuster, W. J. 2010 A&A, submittedGoogle Scholar
Nissen, P. E., Akerman, C., Asplund, M., Fabbian, D., & Pettini, M. 2005, From Lithium to Uranium: Elemental Tracers of Early Cosmic Evolution, IAU Symp., 228, 101CrossRefGoogle Scholar
Ramírez, I., Allende Prieto, C., Redfield, S., & Lambert, D. L. 2006, A&A, 459, 613Google Scholar
Ramírez, I., Meléndez, J., & Asplund, M. 2009, A&A, 508, L17Google Scholar
Richard, O., Michaud, G., & Richer, J. 2005, ApJ, 619, 538CrossRefGoogle Scholar
Shi, J. R., Gehren, T., Zhang, H. W., Zeng, J. L., & Zhao, G. 2007, A&A, 465, 587Google Scholar
Spite, F. & Spite, M. 1982, A&A, 115, 357Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 54 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 1st March 2021. This data will be updated every 24 hours.

Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Observational signatures for depletion in the Spite plateau: solving the cosmological Li discrepancy?
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Observational signatures for depletion in the Spite plateau: solving the cosmological Li discrepancy?
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Observational signatures for depletion in the Spite plateau: solving the cosmological Li discrepancy?
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *