Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-20T07:58:26.908Z Has data issue: false hasContentIssue false

Nucleosynthesis in stars: The Origin of the Heaviest Elements

Published online by Cambridge University Press:  30 December 2019

Amanda I. Karakas*
Affiliation:
Monash Centre for Astrophysics, School of Physics & Astronomy, Monash University, VIC 3800, Australia email: amanda.karakas@monash.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The chemical evolution of the Universe is governed by the nucleosynthesis contribution from stars, which in turn is determined primarily by the initial stellar mass. The heaviest elements are primarily produced through neutron capture nucleosynthesis. Two main neutron capture processes identified are the slow and rapid neutron capture processes (s and r processes, respectively). The sites of the r and s-process are discussed, along with recent progress and their associated uncertainties. This review is mostly focused on the s-process which occurs in low and intermediate-mass stars which have masses up to about 8 solar masses (M). We also discuss the intermediate-neutron capture process (or i-process), which may occur in AGB stars, accreting white dwarfs, and massive stars. The contribution of the i-process to the chemical evolution of elements in galaxies is as yet uncertain.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Abbott, B. P., et al. 2017, Physical Review Letters, 119, 161101 10.1103/PhysRevLett.119.161101CrossRefGoogle Scholar
Abia, C., et al. 2001, ApJ, 559, 1117 10.1086/322383CrossRefGoogle Scholar
Bisterzo, S. et al. 2010, MNRAS, 404, 1529 Google Scholar
Bisterzo, S., Travaglio, C., Wiescher, M., Käppeler, F., & Gallino, R. 2017, ApJ, 835, 97 10.3847/1538-4357/835/1/97CrossRefGoogle Scholar
Buntain, J. et al. 2017, MNRAS, 471, 824 10.1093/mnras/stx1502CrossRefGoogle Scholar
Burbidge, E.M., Burbidge, G.R., Fowler, W.A., & Hoyle, F. 1957, Rev. of Mod. Phys., 29, 547 10.1103/RevModPhys.29.547CrossRefGoogle Scholar
Busso, M., Gallino, R., & Wasserburg, G.J. 1999, ARAA, 37, 239 10.1146/annurev.astro.37.1.239CrossRefGoogle Scholar
Cameron, A.G.W. 1957, AJ, 62, 9 10.1086/107435CrossRefGoogle Scholar
Campbell, S.W., Lugaro, M., & Karakas, A.I., 2010, A&A, 522, L6 Google Scholar
Choplin, A., et al. 2018, A&A, in pressGoogle Scholar
Côté, B. et al. 2018, ApJ, 854, 105 10.3847/1538-4357/aaaae8CrossRefGoogle Scholar
Cowan, J.J., & Rose, W.K. 1977, ApJ, 212, 149 10.1086/155030CrossRefGoogle Scholar
Cristallo, S., et al. 2009, ApJ, 696, 797 10.1088/0004-637X/696/1/797CrossRefGoogle Scholar
Cristallo, S., et al. 2015, ApJ (Supplement Series), 219, 40 Google Scholar
Cruz, M.A., Serenelli, A., & Weiss, A. 2013, A&A, 559, A4 Google Scholar
Dardelet, L., et al. 2015, Proceedings of Science, 204, 145 Google Scholar
Denissenkov, P.A. et al. 2017, ApJ (Letters), 834, L10 10.3847/2041-8213/834/2/L10CrossRefGoogle Scholar
De Smedt, K. et al. 2012, A&A, 541, A67 Google Scholar
Drout, M. R., et al. 2017, Science, 358, 1570 10.1126/science.aaq0049CrossRefGoogle Scholar
Fishlock, C.K., Karakas, A.I., Lugaro, M., & Yong, D. 2014, ApJ, 797, 44 10.1088/0004-637X/797/1/44CrossRefGoogle Scholar
Frischknecht, U. et al. 2016, MNRAS, 456, 1803 10.1093/mnras/stv2723CrossRefGoogle Scholar
Gallino, R. et al. 1998, ApJ, 497, 388 10.1086/305437CrossRefGoogle Scholar
Hampel, M., Stancliffe, R.J., Lugaro, M., & Meyer, B.S. 2016, ApJ, 831, 171 10.3847/0004-637X/831/2/171CrossRefGoogle Scholar
Herwig, F. 2005, ARAA, 43, 435 10.1146/annurev.astro.43.072103.150600CrossRefGoogle Scholar
Herwig, F., Bloecker, T., Schoenberner, D., & El Eid, M. 1997, A&A, 324, L81 Google Scholar
Herwig, F., Langer, N., & Lugaro, M. 2003, ApJ, 593, 1056 10.1086/376726CrossRefGoogle Scholar
Herwig, F., et al. 2011, ApJ, 727, 89 10.1088/0004-637X/727/2/89CrossRefGoogle Scholar
Hotokezaka, K. et al. 2018, arXiv:1801.01141Google Scholar
Ji, A., Frebel, A., Chiti, A., & Simon, J.D. 2016, Nature, 531, 610 10.1038/nature17425CrossRefGoogle Scholar
Käppeler, F., Gallino, R., Bisterzo, S., & Aoki, W. 2011, Reviews of Modern Physics, 83, 157 10.1103/RevModPhys.83.157CrossRefGoogle Scholar
Karakas, A.I., & Lattanzio, J.C. 2014, PASA, 31, e030 10.1017/pasa.2014.21CrossRefGoogle Scholar
Karakas, A.I., & Lugaro, M. 2016, ApJ, 825, 26 10.3847/0004-637X/825/1/26CrossRefGoogle Scholar
Karakas, A.I., et al. 2018, MNRAS, 477, 421 10.1093/mnras/sty625CrossRefGoogle Scholar
Kilpatrick, C. D., et al. 2017, Science, 358, 1583 10.1126/science.aaq0073CrossRefGoogle Scholar
Kobayashi, C., Karakas, A.I., & Umeda, H. 2011, MNRAS, 414, 3250 10.1111/j.1365-2966.2011.18621.xCrossRefGoogle Scholar
Lattimer, J.M., & Schramm, D.N. 1976, ApJ, 210, 549 10.1086/154860CrossRefGoogle Scholar
Limongi, M. & Chieffi, A. 2018, ApJ (Supplement Series), 237, 13 Google Scholar
Lugaro, M., Karakas, A.I., Stancliffe, R.J., & Rijs, C. 2012, ApJ, 747, 2 10.1088/0004-637X/747/1/2CrossRefGoogle Scholar
Lugaro, M., et al. 2015, A&A, 583, A77 Google Scholar
Maeder, A, & Meynet, G. 2012, Reviews of Modern Physics, 84, 25 10.1103/RevModPhys.84.25CrossRefGoogle Scholar
Nomoto, K., Kobayashi, C., & Tominaga, N. 2013, ARAA, 51, 457 10.1146/annurev-astro-082812-140956CrossRefGoogle Scholar
Piersanti, L., Cristallo, S., & Straniero, O. 2013, ApJ, 774, 98 10.1088/0004-637X/774/2/98CrossRefGoogle Scholar
Pignatari, M., et al. 2008, ApJ (Letters), 687, L95 10.1086/593350CrossRefGoogle Scholar
Pignatari, M., et al. 2016, ApJ (Supplement Series), 225, 24 Google Scholar
Prantzos, N., Abia, C., Limongi, M., Chieffi, A., & Cristallo, S. 2018, MNRAS, 476, 3432 10.1093/mnras/sty316CrossRefGoogle Scholar
Ritter, C., et al. 2018, MNRAS, 480, 538 10.1093/mnras/sty1729CrossRefGoogle Scholar
Romano, D., Karakas, A.I., Tosi, M. & Matteucci, F. 2010, A&A, 522, A32 Google Scholar
Shingles, L.J., et al. 2015, MNRAS, 452, 2804 10.1093/mnras/stv1489CrossRefGoogle Scholar
Sneden, C., Cowan, J.J., & Gallino, R. 2008, ARAA, 46, 241 10.1146/annurev.astro.46.060407.145207CrossRefGoogle Scholar
Straniero, O., et al. 1995, ApJ (Letters), 440, L85 10.1086/187767CrossRefGoogle Scholar
Thielemann, F.-K., et al. 2018, Space Science Reviews, 214, 62 10.1007/s11214-018-0494-5CrossRefGoogle Scholar
Trippella, O., Busso, M., Palmerini, S., Maiorca, E., & Nucci, M.C. 2016, ApJ, 818, 125 10.3847/0004-637X/818/2/125CrossRefGoogle Scholar
Van Eck, S., Goriely, S., Jorissen, A., & Plez, B. 2001, Nature, 412, 793 10.1038/35090514CrossRefGoogle Scholar
Van Winckel, H. 2003, ARAA, 41, 391 10.1146/annurev.astro.41.071601.170018CrossRefGoogle Scholar
Ventura, P., Di Criscienzo, M, Carini, R., & D’Antona, F. 2013, MNRAS, 431, 3642 10.1093/mnras/stt444CrossRefGoogle Scholar
Wallerstein, G., et al. 1997, Reviews of Modern Physics, 69, 995 10.1103/RevModPhys.69.995CrossRefGoogle Scholar
Wallner, A. et al. 2015, Nature Communications, 6, 5956 10.1038/ncomms6956CrossRefGoogle Scholar
Wanajo, S., Janaka, H.-T., & Müller, B. 2011, ApJ (Letters), 726, L15 10.1088/2041-8205/726/2/L15CrossRefGoogle Scholar
Winteler, C. et al. 2012, ApJ (Letters), 750, L22 10.1088/2041-8205/750/1/L22CrossRefGoogle Scholar