Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-23T06:33:23.099Z Has data issue: false hasContentIssue false

Newly discovered Planetary Nebulae population in Andromeda (M31): PN Luminosity function and implications for the late stages of stellar evolution

Published online by Cambridge University Press:  30 December 2019

Souradeep Bhattacharya
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany email: sbhattac@eso.org
Magda Arnaboldi
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany email: sbhattac@eso.org
Johanna Hartke
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany email: sbhattac@eso.org
Ortwin Gerhard
Affiliation:
Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, 85748 Garching, Germany
Valentin Comte
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany email: sbhattac@eso.org Aix Marseille Université, CNRS, LAM – Laboratoire d’Astrophysique de Marseille, 38 rue F. Joliot-Curie, 13388 Marseille, France
Alan McConnachie
Affiliation:
NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada
William E. Harris
Affiliation:
Department of Physics & Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stars with masses between ∼0.7 and 8 M end their lives as Planetary Nebulae (PNe). With the MegaCam at CFHT, we have carried out a survey of the central 16 sq. degrees of Andromeda (M31) reaching the outer disk and halo, using a narrow-band [OIII]5007 and a broad-band g filter. This survey extends previous PN samples both in uniform area coverage and depth. We identify ∼4000 PNe in M31, of which ∼3000 are new discoveries. We detect PNe down to ∼6 mag below the bright cut-off of the PN luminosity function (PNLF), ∼2 mag deeper than in previous works. We detect a steep rise in the number of PNe at ∼4.5 mag fainter than the bright cut-off. It persists as we go radially outwards and is steeper than that seen in the Magellanic clouds. We explore possible reasons for this rise, which give insights into the stellar population of M31.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

Footnotes

Based on observations obtained with MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l’Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. The observations at the CFHT were performed with care and respect from the summit of Maunakea which is a significant cultural and historic site.

References

Arnaboldi, M., Aguerri, J. A. L., Napolitano, N. R., et al. 2002, AJ, 123, 760 10.1086/338313CrossRefGoogle Scholar
Arnaboldi, M., Freeman, K. C., Okamura, S., et al. 2003, AJ, 125, 514 10.1086/345962CrossRefGoogle Scholar
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393 Google Scholar
Bonnarel, F., Fernique, P., Bienaym, O., et al., 2000, A&AS, 143, 33 Google Scholar
Boulade, O., Charlot, X., Abbon, P., et al. 2003, in Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, ed. M. Iye, & A. F. M. Moorwood, Proc. SPIE, 4841, 72 Google Scholar
Ciardullo, R., Jacoby, G. H., Ford, H. C., & Neill, J. D. 1989, ApJ, 339, 53 [C89]10.1086/167275CrossRefGoogle Scholar
Ciardullo, R., Durrell, P. R., Laychak, M. B., et al. 2004, ApJ, 614, 167 10.1086/423414CrossRefGoogle Scholar
Dalcanton, J. J., Williams, B. F., Lang, D., et al. 2012, ApJS, 200, 18 10.1088/0067-0049/200/2/18CrossRefGoogle Scholar
Fabricant, D., Fata, R., Roll, J., et al. 2005, PASP, 117, 1411 10.1086/497385CrossRefGoogle Scholar
Ferguson, A. M. N., Mackey, A. D., 2016, Astrophysics and Space Science Library, Vol. 420, Tidal Streams in the Local Group and Beyond. Springer International Publishing, Switzerland, p. 191 10.1007/978-3-319-19336-6_8CrossRefGoogle Scholar
Gesicki, K., Zijlstra, A. A., & Miller Bertolami, M. M. 2018, Nature Astronomy, 2, 580 10.1038/s41550-018-0453-9CrossRefGoogle Scholar
Hartke, J., Arnaboldi, M., Longobardi, A., et al. 2017, A&A, 603, A104 Google Scholar
Henize, K. G., & Westerlund, B. E. 1963, ApJ, 137, 747 10.1086/147552CrossRefGoogle Scholar
Jacoby, G.H. 1980, ApJS, 42, 1 10.1086/190642CrossRefGoogle Scholar
Jacoby, G. H. & De Marco, O., 2002, AJ, 123, 269 10.1086/324737CrossRefGoogle Scholar
Jones, D. & Boffin, H. M. J. 2017, Nature Astronomy, 1, 0117 10.1038/s41550-017-0117CrossRefGoogle Scholar
Longobardi, A., Arnaboldi, M., Gerhard, O., et al. 2013, A&A, 558, A42 Google Scholar
McConnachie, A. W. et al., 2009, Nature, 461, 66 10.1038/nature08327CrossRefGoogle Scholar
Merrett, H. R., Merrifield, M. R., Douglas, N. G., et al. 2006, MNRAS, 369, 120 [M06]10.1111/j.1365-2966.2006.10268.xCrossRefGoogle Scholar
Reid, W. A. & Parker, Q. A., 2010, MNRAS, 405, 1349 Google Scholar
Sanders, N. E., Caldwell, N., McDowell, J. et al. 2012, ApJ, 758, 133 10.1088/0004-637X/758/2/133CrossRefGoogle Scholar
Veyette, M. J., Williams, B. F., Dalcanton, J. J., et al. 2014, ApJ, 792, 121 10.1088/0004-637X/792/2/121CrossRefGoogle Scholar