Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-19T12:37:00.259Z Has data issue: false hasContentIssue false

Near-Infrared Observations of OGLE Classical and Type II Cepheid Variables in the LMC

Published online by Cambridge University Press:  29 August 2019

A. Bhardwaj
Affiliation:
Department of Physics & Astrophysics, University of Delhi, Delhi, India email: anupam.bhardwajj@gmail.com
L. M. Macri
Affiliation:
Texas A&M University, TX, USA
S. M. Kanbur
Affiliation:
State University of New York, Oswego, New York, USA
C.-C. Ngeow
Affiliation:
National Central University, Jhongli, Taiwan
H. P. Singh
Affiliation:
Department of Physics & Astrophysics, University of Delhi, Delhi, India email: anupam.bhardwajj@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This poster presented results from the Large Magellanic Cloud Near-Infrared Synoptic Survey (LMCNISS) for classical and Type II Cepheid variables that were identified in the Optical Gravitational Lensing Experiment (OGLE-III) catalogue. Multi-wavelength time-series data for classical Cepheid variables are used to study light-curve structures as a function of period and wavelength. We exploited a sample of ∼1400 classical and ∼80 Type II Cepheid variables to derive Period–Wesenheit relations that combine both optical and near-infrared data. The new Period–Luminosity and Wesenheit relations were used to estimate distances to several Local-Group galaxies (using classical Cepheids) and to Galactic globular clusters (using Type II Cepheids). By appealing to a statistical framework, we found that fundamental-mode classical Cepheid Period–Luminosity relations are non-linear around 10–18 days at optical and near-IR wavelengths. We also suggested that a non-linear relation provides a better constraint on the Cepheid Period–Luminosity relation in Type Ia Supernovæ host galaxies, though it has a negligible effect on the systematic uncertainties affecting the local measurement of the Hubble constant.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Ade, P. A. R., et al. 2014, A&A, 571, A16Google Scholar
Bhardwaj, A., et al. 2016a, AJ, 151, 88CrossRefGoogle Scholar
Bhardwaj, A., et al. 2016b, MNRAS, 457, 1644CrossRefGoogle Scholar
Bhardwaj, A., Kanbur, S. M., Singh, H. P., Macri, L. M., & Ngeow, C-C. 2015, MNRAS, 447, 3342CrossRefGoogle Scholar
Bhardwaj, A., et al. 2017a, AJ, 153, 154CrossRefGoogle Scholar
Bhardwaj, A., et al. 2017b, A&A, 605, A100Google Scholar
Cioni, M.-R. L., et al. 2011, A&A, 527, A116Google Scholar
Freedman, W. L., et al. 2001, ApJ, 553, 47CrossRefGoogle Scholar
Inno, L., et al. 2013, ApJ, 764, 84CrossRefGoogle Scholar
Leavitt, H. S., & Pickering, E. C. 1912, HCO Circular, 173, 1Google Scholar
Macri, L. M., Ngeow, C.-C., Kanbur, S. M., Mahzooni, S., & Smitka, M. T. 2015, AJ, 149, 117CrossRefGoogle Scholar
Matsunaga, N., Feast, M. W., & Soszyński, I. 2011, MNRAS, 413, 223CrossRefGoogle Scholar
Matsunaga, N., et al. 2006, MNRAS, 370, 1979CrossRefGoogle Scholar
Minniti, D., Lucas, P. W., & Emerson, J. P., et al. 2010, New Astronomy, 15, 433CrossRefGoogle Scholar
Persson, S. E., et al. 2004, AJ, 128, 2239CrossRefGoogle Scholar
Pietrzyński, G., et al. 2013, Nature, 495, 76CrossRefGoogle Scholar
Riess, A. G., et al. 2011, ApJ, 730, 119CrossRefGoogle Scholar
Riess, A. G., et al. 2016, ApJ, 826, 56CrossRefGoogle Scholar
Ripepi, V., et al. 2012, MNRAS, 424, 1807CrossRefGoogle Scholar
Ripepi, V., et al. 2015, MNRAS, 446, 3034CrossRefGoogle Scholar
Simon, N. R., & Lee, A. S. 1981, ApJ, 248, 291CrossRefGoogle Scholar
Soszyński, I., et al. 2015, AcA, 65, 297Google Scholar