Skip to main content Accessibility help
×
Home

Modeling circumstellar envelope with advanced numerical codes

  • P. Procopio (a1), A. De Rosa (a1), C. Burigana (a1), G. Umana (a2) and C. Trigilio (a2)...

Abstract

We propose a modeling study on the formation and evolution of the Circumstellar Envelopes (CSEs) of a sample of selected radio-loud objects, based on an innovative interaction between two codes widely used by the scientific community, but in different fields. CLOUDY (Ferland et al. 1998) is a widely used code to model the spectral energy distribution (SED) of the several objects characterized by clouds of gas heated and ionized by a central object. CosmoMC (Lewis & Bridle 2002) instead is usually used for exploring cosmological parameter space. We investigate here on the exploitation of the sampling performance of the Markov-Chain Monte-Carlo (MCMC) engine of CosmoMC to search for a best fit model of the considered objects through the spectral synthesis capacity of CLOUDY.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Modeling circumstellar envelope with advanced numerical codes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Modeling circumstellar envelope with advanced numerical codes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Modeling circumstellar envelope with advanced numerical codes
      Available formats
      ×

Copyright

References

Hide All
Condon, J. J. & Kaplan, D. L. 1998, ApJ Supp. Series, 117, 361
Ferland, G. J., Korista, K. T., Verner, D. A., Ferguson, J. W., Kingdon, J. B., & Verner, E. M. 1998, PASP, 110, 761
Lewis, A. & Bridle, S. 2002, Phys. Rev. D, 66, 103511
Umana, G., Leto, P., Trigilio, C., Buemi, C. S., Manzitto, P., Toscano, S., Dolei, S., & Cerrigone, L. 2008, A&A, 482, 529
van Hoof, P., PhD Thesis, http://homepage.oma.be/pvh/thesis.html
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed