Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T13:50:20.438Z Has data issue: false hasContentIssue false

The Massive Star Population at the Center of the Milky Way

Published online by Cambridge University Press:  23 January 2015

Francisco Najarro
Affiliation:
Centro de Astrobiología (CSIC/INTA), ctra. de Ajalvir km. 4, 28850 Torrejón de Ardoz, Madrid, Spain
Diego de la Fuente
Affiliation:
Centro de Astrobiología (CSIC/INTA), ctra. de Ajalvir km. 4, 28850 Torrejón de Ardoz, Madrid, Spain
Tom R. Geballe
Affiliation:
Gemini Observatory, 670 N. A'ohoku Place, Hilo, HI 96720, USA
Don F. Figer
Affiliation:
Center for Detectors, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623, USA
D. John Hillier
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, PA 15260
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent detection of a large number of apparently isolated massive stars within the inner 80 pc of the Galactic Center has raised fundamental questions regarding massive star formation in a such a dense and harsh environment. Are these isolated stars the results of tidal interactions between clusters, are they escapees from a disrupted cluster, or do they represent a new mode of massive star formation in isolation? Noting that most of the isolated massive stars have spectral analogs in the Quintuplet Cluster, we have undertaken a combined analysis of the infrared spectra of both selected Quintuplet stars and the isolated objects using Gemini North spectroscopy. We present preliminary results, aiming at α-elements vs iron abundances, stellar properties, ages and radial velocities which will differentiate the top-heavy and star-formation scenarios.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Dong, H., Mauerhan, J., Morris, M. R., Wang, Q. D., & Cotera, A. 2014, in Sjouwerman, L. O., Lang, C. C., & Ott, J. (eds.), IAU Symposium, Vol. 303 of IAU Symposium, pp 230–234Google Scholar
Figer, D. F., McLean, I. S., & Morris, M. 1999, ApJ 514, 202Google Scholar
Figer, D. F., Najarro, F., Gilmore, D., et al. 2002, ApJ 581, 258Google Scholar
Figer, D. F., Najarro, F., & Kudritzki, R. P. 2004, ApJ (Letters) 610, L109Google Scholar
Habibi, M., Stolte, A., & Harfst, S. 2014, A&A 566, A6Google Scholar
Harfst, S., Portegies Zwart, S., & Stolte, A. 2010, MNRAS 409, 628CrossRefGoogle Scholar
Hillier, D. J. & Miller, D. L. 1998, ApJ 496, 407Google Scholar
Liermann, A., Hamann, W.-R., & Oskinova, L. M. 2009, A&A 494, 1137Google Scholar
Martins, F., Genzel, R., Hillier, D. J., et al. 2007, A&A 468, 233Google Scholar
Martins, F., Hillier, D. J., Paumard, T., et al. 2008, A&A 478, 219Google Scholar
Mauerhan, J. C., Cotera, A., Dong, H., et al. 2010a, ApJ 725, 188Google Scholar
Mauerhan, J. C., Muno, M. P., Morris, M. R., Stolovy, S. R., & Cotera, A. 2010b, ApJ 710, 706Google Scholar
Najarro, F., Figer, D. F., Hillier, D. J., Geballe, T. R., & Kudritzki, R. P. 2009, ApJ 691, 1816CrossRefGoogle Scholar
Najarro, F., Figer, D. F., Hillier, D. J., & Kudritzki, R. P. 2004, ApJ (Letters) 611, L105CrossRefGoogle Scholar
Najarro, F., Krabbe, A., Genzel, R., et al. 1997, A&A 325, 700Google Scholar
Oskinova, L. M., Steinke, M., Hamann, W.-R., et al. 2013, MNRAS 436, 3357CrossRefGoogle Scholar