Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T14:43:47.336Z Has data issue: false hasContentIssue false

Massive quasar host galaxies in the reionisation epoch

Published online by Cambridge University Press:  04 June 2020

Bram P. Venemans
Affiliation:
Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany email: venemans@mpia.de
Fabian Walter
Affiliation:
Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany email: venemans@mpia.de
Marcel Neeleman
Affiliation:
Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany email: venemans@mpia.de
Mladen Novak
Affiliation:
Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany email: venemans@mpia.de
Roberto Decarli
Affiliation:
Osservatorio di Astrofisica e Scienza dello Spazio di Bologna via Gobetti 93/3, 40129 Bologna, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Luminous quasars are powered by accretion onto supermassive black holes. Such luminous quasars have been discovered up to the highest redshifts, z > 7. Here we discuss recent observations of the host galaxies of luminous quasars at z ≳ 6. We do not find a correlation between ongoing black hole growth and star-formation rate in the high redshift quasars, possibly indicating that black holes and their hosts do not co-evolve. We further show that even with high spatial resolution observations of the gas kinematics, dynamical mass estimates remain highly uncertain and should be used with caution.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bañados, E.et al. 2018, Nature, 553, 473CrossRefGoogle Scholar
Beelen, A.et al. 2006, ApJ, 642, 69410.1086/500636CrossRefGoogle Scholar
Decarli, R.et al. 2012, ApJ, 756, 15010.1088/0004-637X/756/2/150CrossRefGoogle Scholar
Decarli, R.et al. 2018, ApJ, 854, 9710.3847/1538-4357/aaa5aaCrossRefGoogle Scholar
Hickox, R. C.et al. 2014, ApJ, 782, 910.1088/0004-637X/782/1/9CrossRefGoogle Scholar
Izumi, T.et al. 2018, PASJ, 70, 36Google Scholar
Kormendy, J., & Ho, J. C. 2013, ARAA, 51, 51110.1146/annurev-astro-082708-101811CrossRefGoogle Scholar
Lapi, A.et al. 2014, ApJ, 782, 6910.1088/0004-637X/782/2/69CrossRefGoogle Scholar
Novak, M.et al. 2019, ApJ, 881, 63CrossRefGoogle Scholar
Priddey, R. S. & McMahon, R. G. 2001, MNRAS (Letters), 324, L1710.1046/j.1365-8711.2001.04548.xCrossRefGoogle Scholar
Venemans, B. P.et al. 2016, ApJ, 816, 3710.3847/0004-637X/816/1/37CrossRefGoogle Scholar
Venemans, B. P.et al. 2017a, ApJ, 837, 146CrossRefGoogle Scholar
Venemans, B. P.et al. 2017b, ApJ (Letters), 851, L810.3847/2041-8213/aa943aCrossRefGoogle Scholar
Venemans, B. P.et al. 2018, ApJ, 866, 15910.3847/1538-4357/aadf35CrossRefGoogle Scholar
Venemans, B. P.et al. 2019, ApJ (Letters), 874, L3010.3847/2041-8213/ab11ccCrossRefGoogle Scholar
Walter, F.et al. 2003, Nature, 424, 40610.1038/nature01821CrossRefGoogle Scholar
Wang, R.et al. 2013, ApJ, 773, 4410.1088/0004-637X/773/1/44CrossRefGoogle Scholar
Willott, C. J.et al. 2015, ApJ, 801, 12310.1088/0004-637X/801/2/123CrossRefGoogle Scholar