Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-06T05:12:50.299Z Has data issue: false hasContentIssue false

Magnetorotational core-collapse supernovae: the impact of the magnetic field’s structure

Published online by Cambridge University Press:  27 February 2023

Matteo Bugli
Affiliation:
Laboratoire AIM, CEA/DRF-CNRS-Université Paris Diderot, IRFU/Département d’Astrophysique, CEA-Saclay, F-91191, Gif-sur-Yvette, France email: matteo.bugli@cea.fr
Jérôme Guilet
Affiliation:
Laboratoire AIM, CEA/DRF-CNRS-Université Paris Diderot, IRFU/Département d’Astrophysique, CEA-Saclay, F-91191, Gif-sur-Yvette, France email: matteo.bugli@cea.fr
Martin Obergaulinger
Affiliation:
Departament d’Astronomia i Astrofísica, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Spain email: martin.obergaulinger@uv.es

Abstract

The combination of strong magnetic fields and fast rotation is often invoked as a characteristic of the central engine for outstanding sources such as GRBs, hypernovae, and superluminous supernovae. However, the actual properties of the magnetic field during the collapse of the stellar progenitor are very uncertain, since they depend on the evolution of the star and can be affected by complex dynamo processes occurring in the central proto-neutron star. Using 3D relativistic MHD models we show that higher-order multipolar fields can lead to the onset of a supernova, although they tend to produce less energetic explosions and less collimated outflows. Quadrupolar fields efficiently extract angular momentum from the central core, but the rotational energy is partly stored in the equatorial regions, rather than powering up the polar outflows. Finally, our results show a strong magnetic quenching of the hydrodynamic non-axisymmetric instabilities that are associated to the emission of GWs.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bugli, M., Guilet, J., Obergaulinger, M., Cerd´a-Dur´an, P. & Aloy, M.A. 2020, MNRAS, 492, 58 CrossRefGoogle Scholar
Bugli, M., Guilet, J. & Obergaulinger, M. 2021, MNRAS, 507, 443 CrossRefGoogle Scholar
Drout, M. R., Soderberg, A. M., Gal-Yam, A. et al., 2011, ApJ, 741, 97 CrossRefGoogle Scholar
Kuroda, T., Arcones, A., Takiwaki, T. & Kotake, K. 2020, ApJ, 896, 102 CrossRefGoogle Scholar
M¨osta, P., Richers, S., Ott, C. D. et al. 2014, ApJL, 785, L29CrossRefGoogle Scholar
Nicholl, M., Guillochon, J. & Berger, E. 2017, ApJ, 850, 55 CrossRefGoogle Scholar
Obergaulinger, M. & Aloy, 2021, MNRAS, 503, 4942 CrossRefGoogle Scholar
Raynaud, R., Guilet, J., Janka, H.T. & Gastine, T. 2020, Science Advances, 6(11), 2732 CrossRefGoogle Scholar
Raynaud, R., Cerda-Duran, P. & Guilet, J., 2022, MNRAS, 509, 34103426 Google Scholar
Reboul-Salze, A., Guilet, J., Raynaud, R. & Bugli, M. 2021, MNRAS, 507, 443 Google Scholar
Reboul-Salze, A., Guilet, J., Raynaud, R. & Bugli, M. 2022, sub. to MNRAS, arXiv:2111.02148Google Scholar
Takiwaki, T., Kotake, K., & Foglizzo, T. 2021, MNRAS, 508, 966 CrossRefGoogle Scholar
Woosley, S. E. & Heger, A. 2007, Physics Reports, 442, 269 CrossRefGoogle Scholar