Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-18T21:04:24.063Z Has data issue: false hasContentIssue false

Magnetic Cycles and Meridional Circulation in Global Models of Solar Convection

Published online by Cambridge University Press:  12 August 2011

Mark S. Miesch
Affiliation:
High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, 80307-3000, USA email: miesch@ucar.edu
Benjamin P. Brown
Affiliation:
Dept. of Astronomy, Univ. of Wisconsin, 475 N. Charter St., Madison, WI 53706, USA
Matthew K. Browning
Affiliation:
Canadian Institute for Theoretical Astrophysics, Univ. of Toronto, Toronto, ON M5S3H8, Canada
Allan Sacha Brun
Affiliation:
DSM/IRFU/SAp, CEA-Saclay and UMR AIM, CEA-CNRS-Université Paris 7, 91191 Gif-sur-Yvette, France
Juri Toomre
Affiliation:
JILA and Dept. of Astrophysical & Planetary Sciences, Univ. of Colorado, Boulder, CO 80309-0440, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review recent insights into the dynamics of the solar convection zone obtained from global numerical simulations, focusing on two recent developments in particular. The first is quasi-cyclic magnetic activity in a long-duration dynamo simulation. Although mean fields comprise only a few percent of the total magnetic energy they exhibit remarkable order, with multiple polarity reversals and systematic variability on time scales of 6-15 years. The second development concerns the maintenance of the meridional circulation. Recent high-resolution simulations have captured the subtle nonlinear dynamical balances with more fidelity than previous, more laminar models, yielding more coherent circulation patterns. These patterns are dominated by a single cell in each hemisphere, with poleward and equatorward flow in the upper and lower convection zone respectively. We briefly address the implications of and future of these modeling efforts.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Brandenburg, A. & Subramanian, K. 2005, Phys. Rep., 417, 1CrossRefGoogle Scholar
Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S., & Toomre, J. 2008, ApJ, 689, 1354CrossRefGoogle Scholar
Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S., & Toomre, J. 2010, ApJ, 711, 424CrossRefGoogle Scholar
Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S., & Toomre, J. 2010, ApJ, submittedGoogle Scholar
Browning, M. K., Brun, A. S., & Toomre, J. 2004, ApJ, 601, 512CrossRefGoogle Scholar
Browning, M. K., Miesch, M. S., Brun, A. S., & Toomre, J. 2006, ApJ Let., 648, L157CrossRefGoogle Scholar
Browning, M. K., Brun, A. S., Miesch, M. S., & Toomre, J. 2007, Astron. Nachr., 328, 1100CrossRefGoogle Scholar
Browning, M. K. 2008, ApJ, 676, 1262CrossRefGoogle Scholar
Brun, A. S. & Toomre, J. 2002, ApJ, 570, 865CrossRefGoogle Scholar
Brun, A. S., Miesch, M. S., & Toomre, J. 2004, ApJ, 614, 1073CrossRefGoogle Scholar
Brun, A. S., Browning, M. K., & Toomre, J. 2005, ApJ, 629, 885CrossRefGoogle Scholar
Brun, A. S. & Palacios, A. 2009, ApJ, 702, 1078CrossRefGoogle Scholar
Clune, T. L., Elliott, J. R., Miesch, M. S., Toomre, J., & Glatzmaier, G. A. 1999, Parallel Computing, 25, 361CrossRefGoogle Scholar
Christensen-Dalsgaard, J. 2002, Rev. Mod. Phys., 74, 1073CrossRefGoogle Scholar
Dikpati, M. & Gilman, P. A., 2006, ApJ, 649, 498CrossRefGoogle Scholar
Eliott, J. R., Miesch, M. S., & Toomre, J. 2000, ApJ, 533, 546CrossRefGoogle Scholar
Fan, Y. 2001, ApJ, 546, 509CrossRefGoogle Scholar
Featherstone, N. A., Browning, M. K., Brun, A. S., & Toomre, J. 2009, ApJ, 705, 1000CrossRefGoogle Scholar
Ghizaru, M., Charbonneau, P., & Smolarkiewicz, P.K. 2010, ApJ Let., 715, L133CrossRefGoogle Scholar
Gizon, L. & Birch, A. C. 2005, LRSP, 2, http://www.livingreviews.org/lrsp-2005-6Google Scholar
Jouve, L. & Brun, A. S. 2007, A&A, 474, 239Google Scholar
Jouve, L. & Brun, A. S. 2009, ApJ, 701, 1300CrossRefGoogle Scholar
Miesch, M. S., Elliott, J. R., Toomre, J., Clune, T. L., Glatzmaier, G. A., & Gilman, P. A. 2000, ApJ, 532, 593CrossRefGoogle Scholar
Miesch, M. S., Brun, A. S., & Toomre, J. 2006, ApJ, 641, 618CrossRefGoogle Scholar
Miesch, M. S., Brun, A. S., DeRosa, M. L., & Toomre, J. 2008, ApJ, 673, 557CrossRefGoogle Scholar
Miesch, M. S., Browning, M. K., Brun, A. S., Toomre, J., & Brown, B. P. 2009, in: Dikpati, M., Arentoft, T., González Hernández, I., Lindsey, C. & Hill, F. (eds.), Proc. GONG 2008/SOHO XXI Meeting on Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology, ASP Conf. Ser., vol. 416, p. 443Google Scholar
Miesch, M. S. & Toomre, J. 2009, Ann. Rev. Fluid Mech., 41, 317CrossRefGoogle Scholar
Nordlund, A., Stein, R. F., & Asplund, M. 2009, LRSP, 6, http://www.livingreviews.org/lrsp-2005-2Google Scholar
Rempel, M. 2005, Ap.J., 622, 1320CrossRefGoogle Scholar
Rempel, M. 2006, Ap.J., 647, 662CrossRefGoogle Scholar
Rempel, M., Schüssler, M., Cameron, R. H., & Knölker, 2009, Science, 325, 171.CrossRefGoogle Scholar
Toomre, J. & Brummell, N. H. 1995, in: Hoeksema, J. T., Domingo, V., Fleck, B. & Battrick, B. (eds.), Fourth SOHO Workshop: Helioseismology (ESA: Noordwijk), p. 47Google Scholar
Weber, M, Fan, Y., & Miesch, M. S. 2010, in preparationGoogle Scholar