Skip to main content Accessibility help
×
Home

Laboratory Electronic Spectra of Carbon Chains and Rings

  • L. N. Zack (a1) and J. P. Maier (a1)

Abstract

Carriers of the diffuse interstellar bands (DIBs) cannot be definitively identified without laboratory spectra. Several techniques, including matrix isolation, cavity ringdown spectroscopy, resonance enhanced multiphoton ionization, and ion trapping, have been used to measure the electronic spectra of carbon chains and their derivatives. The gas-phase laboratory spectra could then be compared to the astronomical data of known DIBs. The choice of molecules studied in the gas phase depends on the presence of strong electronic transitions at optical wavelengths, the lifetimes of excited electronic states, and chemical feasibility in diffuse astrophysical environments. Collisional-radiative rate models have also be used in conjunction with laboratory spectra to predict absorption profiles under interstellar conditions.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Laboratory Electronic Spectra of Carbon Chains and Rings
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Laboratory Electronic Spectra of Carbon Chains and Rings
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Laboratory Electronic Spectra of Carbon Chains and Rings
      Available formats
      ×

Copyright

References

Hide All
Achkasova, E., Araki, M., Densiov, A., & Maier, J. P. 2006, J. Mol. Spectrosc., 237, 70
Bernstein, L. S., Clark, F. O., & Lynch, D. K. 2013, ApJ, 768, 84
Boguslavskiy, A. E. & Maier, J. P. 2006, J. Chem. Phys., 125, 094308
Cernicharo, J., Cox, P., Fossé, D., & Güsten, R. 1999, A&A, 351, 341
Chakrabarty, S., Rice, C. A., Mazzotti, F. J., Dietsche, R., & Maier, J. P. 2013, J. Phys. Chem. A, DOI:10.1021/jp312294f
Douglas, A. E. 1977, Nature, 269, 130
Foing, B. H. & Ehrenfreund, P. 1994, Nature, 369, 296
Fulara, J., Jakobi, M., & Maier, J. P. 1993, Chem. Phys. Lett., 211, 227
Hodges, J. A., McMahon, R. J., Sattelmeyer, K. W., & Stanton, J. F. 2000, ApJ, 544, 838
Jochnowitz, E. B. & Maier, J. P. 2008a, Mol. Phys., 106, 2093
Jochnowitz, E. B. & Maier, J. P. 2008b, Annu. Rev. Phys. Chem., 59, 519
Krełowski, J., Beletsky, Y., Galazutdinov, G. A., Kołos, R., Gronowski, M., & LoCurto, G. 2010, ApJ (Letters), 714, L64
Liszt, H., Sonnentrucker, P., Cordiner, M., & Gerin, M. 2012, ApJ (Letters), 753, L28
Maier, J. P., Lakin, N. M., Walker, G. A. H., & Bohlender, D. A. 2001, ApJ, 553, 267
Maier, J. P., Walker, G. A. H., & Bohlender, D. A. 2002, ApJ, 566, 332
Maier, J. P., Boguslavskiy, A. E., Ding, H., Walker, G. A. H., & Bohlender, D. A. 2006, ApJ, 640, 369
Maier, J. P., Walker, G. A. H., Bohlender, D. A., Mazzotti, F. J., Raghunandan, R., Fulara, J., Garkusha, I., & Nagy, A. 2011a, ApJ, 726, 41
Maier, J. P., Chakrabarty, S., Mazzotti, F. J., Rice, C. A., Dietsche, R., Walker, G. A. H., & Bohlender, D. A. 2011b, ApJ (Letters), 729, L20
McCall, B. J., York, D. G., & Oka, T. 2000, ApJ, 531, 329
McCall, B. J., Oka, T., Thorburn, J., Hobbs, L. M., & York, D. G. 2002, ApJ, 567, L145
Morse, M. D. & Maier, J. P. 2011, ApJ, 732, 103
Motylewski, T., Linnartz, H., Vaizert, O., Maier, J. P., Galazutdinov, G. A., Musaev, F., Krełowski, J., Walker, G. A. H., & Bohlender, D. A. 2000, ApJ, 531, 312
Nagarajan, R. & Maier, J. P. 2010, Int. Rev. Phys. Chem., 29, 521
Oka, T. & McCall, B. J. 2011, Science, 331, 293
Rice, C. A., Rudnev, V., Dietsche, R., & Maier, J. P. 2010, AJ, 140, 203
Sarre, P. J., Miles, J. R., Kerr, T. H., Hibbins, R. E., Fossey, S. J., & Somerville, W. B. 1995, MNRAS, 277, L41
Stanton, J. F., Garand, E., Kim, J., Yacovitch, T. I., Hock, C., Case, A. S., Miller, E., Lu, Y-.J., Vogelhuber, K. M., Wren, S., Ichino, T., Maier, J. P., McMahon, R., Osborn, D. L., Neumark, D., & Lineberger, W. C. 2012, J. Chem. Phys., 136, 134312
Wyss, M., Grutter, M., & Maier, J. P. 1999, Chem. Phys. Lett., 304, 35
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Laboratory Electronic Spectra of Carbon Chains and Rings

  • L. N. Zack (a1) and J. P. Maier (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.