Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-24T02:35:14.832Z Has data issue: false hasContentIssue false

JWST observations of ALMA [O iii] 88 μm emitters in the epoch of reionization

Published online by Cambridge University Press:  13 February 2024

Takuya Hashimoto*
Affiliation:
Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba,Tsukuba, Ibaraki 305-8571, Japan Tomonaga Center for the History of the Universe (TCHoU), Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

Abstract

Understanding properties of galaxies in the epoch of reionization (EoR) is a frontier in the modern astronomy. ALMA observations have demonstrated that i) some [O iii] 88 μm emitters have matured stellar populations at z>6, implying early star formation activity at z>10, and that ii) high-z star-forming galaxies typically have very high [O iii] 88 μm-to-[C ii] 158 μm luminosity ratios ranging from 3 to 12 or higher, indicating interstellar media of high-z galaxies could be highly ionized. We discuss initial results of a medium-sized JWST GO1 program that targets a sample of 12 z=6–8 ALMA [O iii] 88 μm emitters with NIRCam and NIRSPec IFU modes (GO-1840). Our JWST GO1 program, in conjunction with ALMA data, will characterize the stellar, nebular, and dust properties of these [O iii] 88 μm emitters and place this galaxies in the context of reionization.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Binggeli, C., Zackrisson, E., Ma, X., et al. 2019, MNRAS, 489, 3827, doi: 10.1093/mnras/stz2387 CrossRefGoogle Scholar
Curtis-Lake, E., Carniani, S., Cameron, A., et al. 2022, arXiv e-prints, arXiv:2212.04568, doi: 10.48550/arXiv.2212.04568 CrossRefGoogle Scholar
Harikane, Y., Ouchi, M., Inoue, A. K., et al. 2020, ApJ, 896, 93, doi: 10.3847/1538-4357/ab94bd CrossRefGoogle Scholar
Hashimoto, T., Laporte, N., Mawatari, K., et al. 2018, Nature, 557, 392, doi: 10.1038/s41586-018-0117-z CrossRefGoogle Scholar
Hashimoto, T., Inoue, A. K., Mawatari, K., et al. 2019, PASJ, 71, 71, doi: 10.1093/pasj/psz049 CrossRefGoogle Scholar
Katz, H., Laporte, N., Ellis, R. S., Devriendt, J., & Slyz, A. 2019, MNRAS, 484, 4054, doi: 10.1093/mnras/stz281 CrossRefGoogle Scholar
Laporte, N., Streblyanska, A., Clement, B., et al. 2014, A&A, 562, L8, doi: 10.1051/0004-6361/201323179 CrossRefGoogle Scholar
Morishita, T., Roberts-Borsani, G., Treu, T., et al. 2022, arXiv e-prints, arXiv:2211.09097, doi: 10.48550/arXiv.2211.09097 CrossRefGoogle Scholar
Nakazato, Y., Yoshida, N., & Ceverino, D. 2023, arXiv e-prints, arXiv:2301.02416, doi: 10.48550/arXiv.2301.02416 CrossRefGoogle Scholar