Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-19T02:56:08.681Z Has data issue: false hasContentIssue false

The jet in the galactic center: An ideal laboratory for magnetohydrodynamics and general relativity

Published online by Cambridge University Press:  24 February 2011

Heino Falcke
Affiliation:
Department of Astrophysics, Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud University, Nijmegen, The Netherlands ASTRON, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands
Sera Markoff
Affiliation:
Astronomical Institute “Anton Pannekoek”, University of Amsterdam, The Netherlands
Geoffrey C. Bower
Affiliation:
Astronomy Department & Radio Astronomy Lab, UC Berkeley, USA
Charles F. Gammie
Affiliation:
Department of Physics, University of Illinois, Urbana, Illinois, USA Astronomy Department, University of Illinois, Urbana, Illinois, USA
Monika Mościbrodzka
Affiliation:
Department of Physics, University of Illinois, Urbana, Illinois, USA
Dipankar Maitra
Affiliation:
Department of Astronomy, University of Michigan, Ann Arbor, Michigan, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Of all possible black hole sources, the event horizon of the Galactic Center black hole, Sgr A*, subtends the largest angular scale on the sky. It is therefore a prime candidate to study and image plasma processes in strong gravity and it even allows imaging of the shadow cast by the event horizon. Recent mm-wave VLBI and radio timing observations as well as numerical GRMHD simulations now have provided several breakthroughs that put Sgr A* back into the focus. Firstly, VLBI observations have now measured the intrinsic size of Sgr A* at multiple frequencies, where the highest frequency measurements have approached the scale of the black hole shadow. Moreover, measurements of the radio variability show a clear time lag between 22 GHz and 43 GHz. The combination of size and timing measurements, allows one to actually measure the flow speed and direction of magnetized plasma at some tens of Schwarzschild radii. This data strongly support a moderately relativistic outflow, consistent with an accelerating jet model. This is compared to recent GRMHD simulation that show the presence of a moderately relativistic outflow coupled to an accretion flow Sgr A*. Further VLBI and timing observations coupled to simulations have the potential to map out the velocity profile from 5-40 Schwarzschild radii and to provide a first glimpse at the appearance of a jet-disk system near the event horizon. Future submm-VLBI experiments would even be able to directly image those processes in strong gravity and directly confirm the presence of an event horizon.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Aitken, D. K., Greaves, J., Chrysostomou, A., et al. 2000, ApJL, 534, L173CrossRefGoogle Scholar
Baganoff, F. K., Bautz, M. W., Brandt, W. N., et al. 2001, Nature, 413, 45CrossRefGoogle Scholar
Balick, B. & Brown, R. L. 1974, ApJ, 194, 265CrossRefGoogle Scholar
Blandford, R. D. & Königl, A. 1979, ApJ, 232, 34CrossRefGoogle Scholar
Bower, G. C., Backer, D. C., Zhao, J. H., Goss, M., & Falcke, H. 1999, ApJ, 521, 582CrossRefGoogle Scholar
Bower, G. C., Falcke, H., Herrnstein, R. M., et al. 2004, Science, 304, 704CrossRefGoogle Scholar
Bower, G. C., Falcke, H., Wright, M. C., & Backer, D. C. 2005, ApJL, 618, L29CrossRefGoogle Scholar
Broderick, A. E. & Loeb, A. 2006, MNRAS, 367, 905CrossRefGoogle Scholar
Chan, C., Liu, S., Fryer, C. L., et al. 2009, ApJ, 701, 521CrossRefGoogle Scholar
Coker, R., Melia, F., & Falcke, H. 1999, ApJ, 523, 642CrossRefGoogle Scholar
Dexter, J., Agol, E., Fragile, P. C., & McKinney, J. C. 2010, ApJ, 717, 1092CrossRefGoogle Scholar
Dodds-Eden, K., Porquet, D., Trap, G., et al. 2009, ApJ, 698, 676CrossRefGoogle Scholar
Doeleman, S., Weintroub, J., Rogers, A. E. E., & et al. 2008, Nature, 455, 78CrossRefGoogle Scholar
Dolence, J. C., Gammie, C. F., Mościbrodzka, M., & Leung, P. K. 2009, ApJs, 184, 387CrossRefGoogle Scholar
Eckart, A., Baganoff, F. K., Morris, M. R., et al. 2009, A&A, 500, 935Google Scholar
Eckart, A., Baganoff, F. K., Zamaninasab, M., et al. 2008, A&A, 479, 625Google Scholar
Ekers, R. D., Goss, W. M., Schwarz, U. J., Downes, D., & Rogstad, D. H. 1975, A&A, 43, 159Google Scholar
Falcke, H. 1996, ApJL, 464, L67CrossRefGoogle Scholar
Falcke, H. 1999a, in ASP Conf. Ser. 186: The Central Parsecs of the Galaxy, ed. Falcke, H., Cotera, A., Duschl, W., Melia, F., & Rieke, M. J. (San Francisco: Astronomical Society of the Pacific), 148Google Scholar
Falcke, H. 1999b, in ASP Conf. Ser. 186: The Central Parsecs of the Galaxy, ed. Falcke, H., Cotera, A., Duschl, W., Melia, F., & Rieke, M. J. (San Francisco: Astronomical Society of the Pacific), 113Google Scholar
Falcke, H. 2003, Radio and X-ray emission from the Galactic black hole, ed. Falcke, H. & Hehl, F. W. (IoP), 310342CrossRefGoogle Scholar
Falcke, H. & Biermann, P. L. 1995, A&A, 293, 665Google Scholar
Falcke, H. & Biermann, P. L. 1999, A&A, 342, 49Google Scholar
Falcke, H., Körding, E., & Markoff, S. 2004, A&A, 414, 895Google Scholar
Falcke, H., Mannheim, K., & Biermann, P. L. 1993, A&A, 278, L1Google Scholar
Falcke, H. & Markoff, S. 2000, A&A, 362, 113Google Scholar
Falcke, H., Markoff, S., & Bower, G. C. 2009, A&A, 496, 77Google Scholar
Falcke, H. & Melia, F. 1997, ApJ, 479, 740CrossRefGoogle Scholar
Falcke, H., Melia, F., & Agol, E. 2000, ApJL, 528, L13CrossRefGoogle Scholar
Fish, V. L., Doeleman, S. S., Broderick, A. E., Loeb, A., & Rogers, A. E. E. 2009, ApJ, 706, 1353CrossRefGoogle Scholar
Genzel, R., Eisenhauer, F., & Gillessen, S. 2010, ArXiv e-printsGoogle Scholar
Genzel, R., Schödel, R., Ott, T., et al. 2003, Nature, 425, 934CrossRefGoogle Scholar
Ghez, A. M., Salim, S., Weinberg, N. N., et al. 2008, ApJ, 689, 1044CrossRefGoogle Scholar
Gillessen, S., Eisenhauer, F., Fritz, T. K., et al. 2009, ApJL, 707, L114CrossRefGoogle Scholar
Harko, T., Kovács, Z., & Lobo, F. S. N. 2009, Class. Quant. Grav., 26, 215006CrossRefGoogle Scholar
Hawley, J. F. 2000, ApJ, 528, 462CrossRefGoogle Scholar
Herrnstein, R. M., Zhao, J.-H., Bower, G. C., & Goss, W. M. 2004, AJ, 127, 3399CrossRefGoogle Scholar
Hilburn, G., Liang, E., Liu, S., & Li, H. 2010, MNRAS, 401, 1620CrossRefGoogle Scholar
Johannsen, T. & Psaltis, D. 2010, ApJ, 718, 446CrossRefGoogle Scholar
Koide, S., Shibata, K., & Kudoh, T. 1999, ApJ, 522, 727CrossRefGoogle Scholar
Körding, E., Falcke, H., & Corbel, S. 2006, A&A, 456, 439Google Scholar
Lynden-Bell, D. & Rees, M. J. 1971, MNRAS, 152, 461CrossRefGoogle Scholar
Maitra, D., Markoff, S., & Falcke, H. 2009, A&A, 508, L13Google Scholar
Markoff, S., Bower, G. C., & Falcke, H. 2007, MNRAS, 379, 1519CrossRefGoogle Scholar
Markoff, S., Falcke, H., Yuan, F., & Biermann, P. L. 2001, A&A, 379, L13Google Scholar
Markoff, S., Nowak, M., Young, A., et al. 2008, ApJ, 681, 905CrossRefGoogle Scholar
Marrone, D. P., Baganoff, F. K., Morris, M. R., et al. 2008, ApJ, 682, 373CrossRefGoogle Scholar
Marrone, D. P., Moran, J. M., Zhao, J.-H., & Rao, R. 2007, ApJL, 654, L57CrossRefGoogle Scholar
Mauerhan, J. C., Morris, M., Walter, F., & Baganoff, F. K. 2005, ApJL, 623, L25CrossRefGoogle Scholar
McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, in Astronomical Society of the Pacific Conference Series, Vol. 376, Astronomical Data Analysis Software and Systems XVI, ed. Shaw, R. A., Hill, F., & Bell, D. J., 127Google Scholar
Meier, D. L., Koide, S., & Uchida, Y. 2001, Science, 291, 84CrossRefGoogle Scholar
Melia, F. 1992, ApJL, 387, L25CrossRefGoogle Scholar
Melia, F. & Falcke, H. 2001, ARA&A, 39, 309Google Scholar
Merloni, A., Heinz, S., & di Matteo, T. 2003, MNRAS, 345, 1057CrossRefGoogle Scholar
Meyer, L., Do, T., Ghez, A., et al. 2008, ApJL, 688, L17CrossRefGoogle Scholar
Mościbrodzka, M., Gammie, C. F., Dolence, J. C., Shiokawa, H., & Leung, P. K. 2009, ApJ, 706, 497CrossRefGoogle Scholar
Nagar, N. M., Falcke, H., & Wilson, A. S. 2005, A&A, 435, 521Google Scholar
Narayan, R., Mahadevan, R., Grindlay, J. E., Popham, R. G., & Gammie, C. 1998, ApJ, 492, 554CrossRefGoogle Scholar
Noble, S. C., Leung, P. K., Gammie, C. F., & Book, L. G. 2007, Class. Quant. Grav., 24, 259CrossRefGoogle Scholar
Ohsuga, K., Kato, Y., & Mineshige, S. 2005, ApJ, 627, 782CrossRefGoogle Scholar
Porquet, D., Grosso, N., Predehl, P., et al. 2008, A&A, 488, 549Google Scholar
Quataert, E. & Gruzinov, A. 2000, ApJ, 539, 809CrossRefGoogle Scholar
Reynolds, S. P. & McKee, C. F. 1980, ApJ, 239, 893CrossRefGoogle Scholar
Schödel, R., Ott, T., Genzel, R., et al. 2002, Nature, 419, 694CrossRefGoogle Scholar
Shen, Z.-Q., Lo, K. Y., Liang, M.-C., Ho, P. T. P., & Zhao, J.-H., 2005, Nature, 438, 62CrossRefGoogle Scholar
Stone, J. M., Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1996, ApJ, 463, 656CrossRefGoogle Scholar
Yuan, F., Markoff, S., & Falcke, H. 2002, A&A, 383, 854Google Scholar
Yuan, Y., Cao, X., Huang, L., & Shen, Z. 2009, ApJ, 699, 722CrossRefGoogle Scholar
Yusef-Zadeh, F., Bushouse, H., Wardle, M., et al. 2009, ApJ, 706, 348CrossRefGoogle Scholar
Yusef-Zadeh, F., Roberts, D., Wardle, M., Heinke, C. O., & Bower, G. C. 2006, ApJ, 650, 189CrossRefGoogle Scholar
Yusef-Zadeh, F., Wardle, M., Heinke, C., et al. 2008, ApJ, 682, 361CrossRefGoogle Scholar