Skip to main content Accessibility help
×
Home

Ionisation fronts and their interaction with density fluctuations: implications for reionisation

Published online by Cambridge University Press:  06 October 2005

Ilian T. Iliev
Affiliation:
Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8, Canada, email: iliev@cita.utoronto.ca
Paul R. Shapiro
Affiliation:
Department of Astronomy, University of Texas, Austin, 78712, USA
Evan Scannapieco
Affiliation:
Kavli Institute for Theoretical Physics, Kohn Hall, UC Santa Barbara, Santa Barbara, CA 93106, USA
Garrelt Mellema
Affiliation:
ASTRON, P.O. Box 1, NL-7990 AA Dwingeloo, The Netherlands
Marcelo Alvarez
Affiliation:
Department of Astronomy, University of Texas, Austin, 78712, USA
Alejandro C. Raga
Affiliation:
Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México (UNAM), Apdo. Postal 70-543, 04510 México, D. F., México
Ue-Li Pen
Affiliation:
Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8, Canada, email: iliev@cita.utoronto.ca
Rights & Permissions[Opens in a new window]

Abstract

The propagation of cosmological ionisation fronts (I-fronts) during reionisation is strongly influenced by small-scale structure. Here we summarise our recent attempts to understand the effect of this small-scale structure. We present high resolution cosmological N-body simulations at high-z ($z>6$) which resolve a wide range of halo mass, from mini-halos to clusters of large, rare halos. We also study how mini-halos affect I-fronts, through simulations of mini-halo photo-evaporation including numerical gas dynamics with radiative transfer. Furthermore, we modify the I-front propagation equations to account for evolving small-scale structure, and incorporate these results into a semi-analytical reionisation model. When intergalactic medium clumping and mini-halo clustering around sources are included, small-scale structure affects reionisation by slowing it down and extending it in time. This helps to explain the observations of the Wilkinson Microwave Anisotropy Probe, which imply an early and extended reionisation epoch. We also study how source clustering affects the evolution and size of H II regions, finding, in agreement with simulations, that H II regions usually expand, and rarely shrink. Hence, “relic H II regions” are an exception, rather than the rule. When the suppression of small-mass sources in already-ionised regions by Jeans-mass filtering is accounted for, H II regions are smaller, delaying overlap. We also present a new numerical method for radiative transfer which is fast, efficient and easily coupled to hydrodynamics and N-body codes, along with sample tests and applications.

Type
Contributed Papers
Copyright
© 2005 International Astronomical Union

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 27 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st January 2021. This data will be updated every 24 hours.

Access
Hostname: page-component-76cb886bbf-tvlwp Total loading time: 0.724 Render date: 2021-01-21T21:35:03.519Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Ionisation fronts and their interaction with density fluctuations: implications for reionisation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Ionisation fronts and their interaction with density fluctuations: implications for reionisation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Ionisation fronts and their interaction with density fluctuations: implications for reionisation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *