Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-19T21:10:57.908Z Has data issue: false hasContentIssue false

Impacts of Radial Mixing on the Galactic Thick and Thin Disks

Published online by Cambridge University Press:  02 August 2018

Daisuke Kawata*
Affiliation:
Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK email: d.kawata@ucl.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using N-body simulations of the Galactic disks, we qualitatively study how the metallicity distributions of the thick and thin disk stars are modified by radial mixing induced by the bar and spiral arms. We show that radial mixing drives a positive vertical metallicity gradient in the mono-age disk population whose initial scale-height is constant and initial radial metallicity gradient is tight and negative. On the other hand, if the initial disk is flaring, with scale-height increasing with galactocentric radius, radial mixing leads to a negative vertical metallicity gradient, which is consistent with the current observed trend. We also discuss impacts of radial mixing on the metallicity distribution of the thick disk stars. By matching the metallicity distribution of N-body models to the SDSS/APOGEE data, we argue that the progenitor of the Milky Way’s thick disk should not have a steep negative metallicity gradient.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Anders, F et al. 2014, A&A, 564, A115Google Scholar
Brook, C. B., Kawata, D., Gibson, B. K., & Freeman, K. C., 2004, ApJ, 612, 894Google Scholar
Brook, C. B. et al. 2006, ApJ, 639, 126Google Scholar
Brook, C. B. et al. 2012, MNRAS, 426, 690Google Scholar
Carrell, K., Chen, Y., & Zhao, G., 2012, AJ, 144, 185Google Scholar
Ciucă, I. et al. 2018, MNRAS, 475, 1203Google Scholar
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306. 1202.3665Google Scholar
Gaia Collaboration, Brown, A. G. A. et al. 2016, A&A, 595, A2Google Scholar
Gibson, B. K. et al. 2013, A&A, 554, A47Google Scholar
Grand, R. J. J., Kawata, D., & Cropper, M., 2012, MNRAS, 421, 1529Google Scholar
Grand, R. J. J., Kawata, D., & Cropper, M., 2015, MNRAS, 447, 4018Google Scholar
Hayden, M. R. et al. 2015, ApJ, 808, 132Google Scholar
Kawata, D. et al. 2018, MNRAS, 437, 867Google Scholar
Kawata, D. & Gibson, B. K., 2003, MNRAS, 340, 908Google Scholar
Kawata, D. et al. 2017b, MNRAS, 464, 702Google Scholar
Kawata, D., Okamoto, T., Gibson, B. K., Barnes, D. J., & Cen, R., 2013, MNRAS, 428, 1968Google Scholar
Kunder, A. et al. 2017, AJ, 153, 75Google Scholar
Lindegren, L. et al. 2016, A&A, 595, A4Google Scholar
Martig, M., Minchev, I., Ness, M., Fouesneau, M., & Rix, H.-W., 2016, ApJ, 831, 139Google Scholar
Miglio, A. et al. 2017, Astronomische Nachrichten, 338, 644Google Scholar
Mikolaitis, Š. et al. 2014, A&A, 572, A33Google Scholar
Minchev, I., Chiappini, C., & Martig, M., 2014, A&A, 572, A92Google Scholar
Minchev, I. et al. 2015, ApJl, 804, L9Google Scholar
Miranda, M. S. et al. 2016, A&A, 587, A10Google Scholar
Rahimi, A., Carrell, K., & Kawata, D., 2014, Research in Astronomy and Astrophysics, 14, 1406Google Scholar
Rahimi, A. & Kawata, D., 2012, MNRAS, 422, 2609Google Scholar
Schönrich, R. & Binney, J., 2009, MNRAS, 396, 203Google Scholar
Schönrich, R. & McMillan, P. J. 2017, MNRASGoogle Scholar
Sellwood, J. A. & Binney, J. J., 2002, MNRAS, 336, 785Google Scholar
Xiang, M.-S. et al. 2015, Research in Astronomy and Astrophysics, 15, 1209Google Scholar