Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T19:29:47.860Z Has data issue: false hasContentIssue false

The impact of AGN on their host galaxies

Published online by Cambridge University Press:  25 July 2014

C. M. Harrison*
Affiliation:
Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK email: c.m.harrison@durham.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In these proceedings I briefly: (1) review the impact (or “feedback”) that active galactic nuclei (AGN) are predicted to have on their host galaxies and larger scale environment, (2) review the observational evidence for or against these predictions and (3) present new results on ionised outflows in AGN. The observational support for the “maintenance mode” of feedback is strong (caveat the details); AGN at the centre of massive halos appear to be regulating the cooling of hot gas, which could in turn control the levels of future star formation (SF) and black hole growth. In contrast, direct observational support for more rapid forms of feedback, which dramatically impact on SF (i.e., the “quasar mode”), remains elusive. From a systematic study of the spectra of ≈24 000 AGN we find that extreme ionised gas kinematics are common, and are most prevalent in radio bright AGN (L1.4 GHz > 103 W Hz−1). Follow-up IFU observations have shown that these extreme gas kinematics are extended over kilo-parsec scales. However, the co-existence of high-levels of SF, luminous AGN activity and radio jets raises interesting questions on the primary drivers and impact of these outflows. Galaxy-wide, high-mass outflows are being observed in an increasing number of AGN and are a plausible mechanism for the depletion of gas; however, there is still much work to be done to determine the physical processes that drive these outflows and to measure the level of impact that they have on their host galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Alexander, D. M., Hickox, R. C., 2012, New Astron. Revs, 56, 93Google Scholar
Benson, A. J., et al. 2003, ApJ, 599, 38Google Scholar
Best, P. N. & Heckman, T. M., 2012, MNRAS, 421, 1569CrossRefGoogle Scholar
Best, P. N., et al. 2006, MNRAS, 368, L67Google Scholar
Bîrzan, L., et al. 2008, ApJ, 686, 859CrossRefGoogle Scholar
Bîrzan, L., et al. 2004, ApJ, 607, 800Google Scholar
Boehringer, H., et al. 1993, MNRAS, 264, L25Google Scholar
Booth, C. M. & Schaye, J., 2010, MNRAS, 405, L1Google Scholar
Borgani, S., et al. 2008, Space Sci. Revs, 134, 379Google Scholar
Bower, R. G., et al. 2006, MNRAS, 370, 645Google Scholar
Bower, R. G., McCarthy, I. G., & Benson, A. J., 2008, MNRAS, 390, 1399Google Scholar
Carilli, C. L., Perley, R. A., & Harris, D. E., 1994, MNRAS, 270, 173CrossRefGoogle Scholar
Cattaneo, A., et al. 2009, Nature, 460, 213CrossRefGoogle Scholar
Cavagnolo, K. W., et al. 2010, ApJ, 720, 1066CrossRefGoogle Scholar
Churazov, E., et al. 2005, MNRAS, 363, L91CrossRefGoogle Scholar
Croton, D. J., et al. 2006, MNRAS, 365, 11CrossRefGoogle Scholar
Danielson, A. L. R., et al. 2012, MNRAS, 422, 494Google Scholar
Debuhr, J., Quataert, E., & Ma, C.-P., 2012, MNRAS, 420, 2221Google Scholar
Debuhr, J., et al. 2010, MNRAS, 406, L55CrossRefGoogle Scholar
Di Matteo, T., Springel, V., & Hernquist, L., 2005, Nature, 433, 604CrossRefGoogle Scholar
Dunn, R. J. H. & Fabian, A. C., 2008, MNRAS, 385, 757CrossRefGoogle Scholar
Elbaz, D., et al. 2011, A&A, 533, A119Google Scholar
Fabian, A. C. 1999, MNRAS, 308, L39Google Scholar
Fabian, A. C. 2012, AA&AR, 50, 455Google Scholar
Fabjan, D., et al. 2010, MNRAS, 401, 1670CrossRefGoogle Scholar
Feltre, A., et al. 2013, MNRAS, 434, 2426Google Scholar
Gabor, J. M., Davé, R., Oppenheimer, B. D., & Finlator, K., 2011, MNRAS, 417, 2676Google Scholar
Ganguly, R. & Brotherton, M. S., 2008, ApJ, 672, 102Google Scholar
Gaspari, M., et al. 2011, MNRAS, 411, 349Google Scholar
Goulding, A. D., et al. 2013, arXiv:1310.8298Google Scholar
Gültekin, K., et al. 2009, ApJ, 698, 198Google Scholar
Harrison, C. M., et al. 2012a, ApJ (Letters), 760, L15CrossRefGoogle Scholar
Harrison, C. M., et al. 2012b, MNRAS, 426, 1073CrossRefGoogle Scholar
Harrison, C. M., et al. 2014, MNRAS, 441, 3306Google Scholar
Hickox, R. C., et al. 2009, ApJ, 696, 891Google Scholar
Hickox, R. C., et al. 2013, arXiv:1306.3218Google Scholar
Hlavacek-Larrondo, J., et al. 2013, ApJ, 777, 163Google Scholar
Horner, D. J., 2001, PhD thesis, University of Maryland College ParkGoogle Scholar
Ishibashi, W. & Fabian, A. C., 2012, MNRAS, 427, 2998Google Scholar
Kalfountzou, E., et al. 2012, MNRAS, 427, 2401CrossRefGoogle Scholar
Karouzos, M., et al. 2013, arXiv:1309.7353Google Scholar
King, A. R., Zubovas, K., & Power, C., 2011, MNRAS, 415, L6CrossRefGoogle Scholar
Kormendy, J. & Richstone, D., 1995, AA&AR, 33, 581Google Scholar
Lagos, C. D. P., Cora, S. A., Padilla, N. D., 2008, MNRAS, 388, 587Google Scholar
Liu, G., et al. 2013, MNRAS, 436, 2576Google Scholar
Lutz, D., et al. 2010, ApJ, 712, 1287CrossRefGoogle Scholar
Magorrian, J., et al. 1998, AJ, 115, 2285Google Scholar
Mainieri, V., et al. 2011, A&A, 535, A80Google Scholar
Markevitch, M., 1998, ApJ, 504, 27Google Scholar
McCarthy, I. G., et al. 2011, MNRAS, 412, 1965Google Scholar
McCarthy, I. G., et al. 2010, MNRAS, 406, 822Google Scholar
McNamara, B. R. & Nulsen, P. E. J., 2012, New Journal of Physics, 14, 055023Google Scholar
McNamara, B. R., et al. 2000, ApJ (Letters), 534, L135Google Scholar
Mullaney, J. R., et al. 2013, MNRAS, 433, 622CrossRefGoogle Scholar
Mullaney, J. R., et al. 2012, MNRAS, 419, 95Google Scholar
Murray, N., Quataert, E., & Thompson, T. A., 2005, ApJ, 618, 569Google Scholar
Nayakshin, S. & Zubovas, K., 2012, MNRAS, 427, 372Google Scholar
Nesvadba, N. P. H., et al. 2008, A&A, 491, 407Google Scholar
Page, M. J., et al. 2012, Nature, 485, 213Google Scholar
Peng, C. Y., 2007, ApJ, 671, 1098CrossRefGoogle Scholar
Peterson, J. R., et al. 2003, ApJ, 590, 207CrossRefGoogle Scholar
Pounds, K. A., et al. 2003, MNRAS, 345, 705Google Scholar
Puchwein, E., Sijacki, D., & Springel, V., 2008, ApJ (Letters), 687, L53CrossRefGoogle Scholar
Quilis, V., Bower, R. G., & Balogh, M. L., 2001, MNRAS, 328, 1091CrossRefGoogle Scholar
Rosas-Guevara, Y. M., et al. 2013, arXiv:1312.0598CrossRefGoogle Scholar
Rosario, D. J., et al. 2012, A&A, 545, A45Google Scholar
Rosario, D. J., et al. 2013, arXiv:1310.1922Google Scholar
Rovilos, E., et al. 2012, A&A, 546, A58Google Scholar
Rupke, D. S. N. & Veilleux, S., 2011, ApJ (Letters), 729, L27Google Scholar
Shao, L., et al. 2010, A&A, 518, L26Google Scholar
Silk, J. & Rees, M. J., 1998, A&A, 331, L1Google Scholar
Simpson, C., et al. 2013, MNRAS, 433, 2647Google Scholar
Smolčić, V., et al. 2009, ApJ, 696, 24CrossRefGoogle Scholar
Stott, J. P., et al. 2012, MNRAS, 422, 2213Google Scholar
Sun, M., et al. 2009, ApJ, 693, 1142Google Scholar
Tombesi, F., et al. 2010, A&A, 521, A57Google Scholar
Tremaine, S., et al. 2002, ApJ, 574, 740CrossRefGoogle Scholar
Valageas, P., Silk, J., 1999, A&A, 350, 725Google Scholar
Wiersma, R. P. C., et al. 2009, MNRAS, 399, 574Google Scholar
Wu, K. K. S., Fabian, A. C., & Nulsen, P. E. J., 2000, MNRAS, 318, 889CrossRefGoogle Scholar
Xue, Y. Q., et al. 2010, ApJ, 720, 368Google Scholar
Zinn, P.-C., et al. 2013, ApJ, 774, 66CrossRefGoogle Scholar