Skip to main content Accessibility help
×
Home

The IMF in the Galactic Disk and Bulge are Indistinguishable

  • Christopher Wegg (a1), Ortwin Gerhard (a1) and Matthieu Portail (a1)

Abstract

We have measured the IMF of the inner Galaxy using ~3000 OGLE-III microlensing events. Each event’s timescale depends on both the lens mass, and the velocities and distances of the lens and source. New dynamical models were used provide the distribution of distances and velocities, and thereby measure the lens mass distribution. Using a power-law or log-normal parameterisation the resultant IMF is indistinguishable from local measurements by Kroupa or Chabrier respectively. The lenses lie in the inner Galaxy where the stars are mostly ~10 Gyr old and formed on a fast α-element enhanced timescale thereby constraining IMF variability with the properties of the collapsing gas cloud. Furthermore microlensing measures the stellar mass budget, including dark remnants, to low mass. Stars contribute most of the mass in the inner Galaxy with a low fraction remaining for dark matter. Reconciling this with local dark matter estimates requires a core or shallow cusp in its profile.

Copyright

References

Hide All
Bastian, N., Covey, K. R., & Meyer, M. R. 2010, ARAA, 48, 339
Bensby, T., Feltzing, S., Gould, A., et al. 2017, eprint arXiv:1702.02971
Bochanski, J. J., Hawley, S. L., Covey, K. R., et al. 2010, AJ, 139, 2679
Calamida, A., Sahu, K. C., Casertano, S., et al. 2015, ApJ, 810, 8
Calchi Novati, S., De Luca, F., Jetzer, P., Mancini, L., & Scarpetta, G. 2008, A&A, 480, 723
Chabrier, G. 2005, in The IMF 50 Years Later (Dordrecht: Springer Netherlands), 41
Cole, D. R. & Binney, J. 2017, MNRAS, 465, 798
Guszejnov, D., Hopkins, P. F., & Ma, X. 2017, eprint arXiv:1702.04431
Kroupa, P. 2001, MNRAS, 322, 231
Kunder, A., Koch, A., Michael Rich, R., et al. 2012, AJ, 143, 57
Matteucci, F. 2014, Volume 37 Saas-Fee Advanced Course (Springer Berlin Heidelberg), 145
Mróz, P., Udalski, A., Skowron, J., et al. 2017, Nature, 65, 1
Ness, M., Freeman, K., Athanassoula, E., et al. 2013, MNRAS, 432, 2092
Piffl, T., Binney, J., McMillan, P. J., et al. 2014, MNRAS, 445, 3133
Portail, M., Gerhard, O., Wegg, C., & Ness, M. 2017, MNRAS, 465, 1621 (P17)
Sumi, T. & Penny, M. T. 2016, ApJ, 827, 139
van Dokkum, P. G. & Conroy, C. 2012, ApJ, 760, 70
Wegg, C. & Gerhard, O. 2013, MNRAS, 435, 1874
Wegg, C., Gerhard, O., & Portail, M. 2015, MNRAS, 450, 4050
Wegg, C., Gerhard, O., & Portail, M. 2016, MNRAS, 463, 557
Wegg, C., Gerhard, O., & Portail, M. 2017, ApJ, 843, L5
Wyrzykowski, Ł., Rynkiewicz, A. E., Skowron, J., et al. 2015, ApJS, 216, 12
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed