Skip to main content Accessibility help
×
Home

Hydrodynamical simulations of Pinwheel nebula WR 104

Published online by Cambridge University Press:  12 July 2011

Astrid Lamberts
Affiliation:
Laboratoire d'Astrophysique de Grenoble, UMR 5571 CNRS, Université Joseph Fourier, BP 53, 38041 Grenoble, France, email: astrid.lamberts@obs.ujf-grenoble.fr
Sebastien Fromang
Affiliation:
Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d'Astrophysique CEA-Saclay F-91191 Gif-sur-Yvette, France
Guillaume Dubus
Affiliation:
Laboratoire d'Astrophysique de Grenoble, UMR 5571 CNRS, Université Joseph Fourier, BP 53, 38041 Grenoble, France, email: astrid.lamberts@obs.ujf-grenoble.fr
Corresponding
Rights & Permissions[Opens in a new window]

Abstract

Pinwheel Nebulae are colliding wind binaries (CWB) composed of a Wolf-Rayet star and an early-type star. We first compare our simulations to analytic solutions for CWB. Then we perform large scale 2D simulations of the particular system WR 104. We determine the properties of the gas in the winds and confirm the flow in the spiral has a ballistic motion.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Antokhin, I. I., Owocki, S. P. & Brown, J. C. 2004, ApJ, 611, 434CrossRefGoogle Scholar
Canto, J., Raga, A. C. & Wilkin, F. P. 1996, ApJ, 469, 729CrossRefGoogle Scholar
Harries, T. J., Monnier, J. D., Symington, N. H., & Kurosawa, R. 2004, MNRAS, 350, 565CrossRefGoogle Scholar
Pittard, J. M. 2009, MNRAS, 396, 1743CrossRefGoogle Scholar
Teyssier, R. 2002, A&A, 385, 337Google Scholar
Tuthill, P. G., Monnier, J. D., Lawrance, N., Danchi, W. C. et al. 2008, ApJ, 675, 698CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 104 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 28th January 2021. This data will be updated every 24 hours.

Access
Hostname: page-component-6585876b8c-zwpdr Total loading time: 0.346 Render date: 2021-01-28T13:27:39.147Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Hydrodynamical simulations of Pinwheel nebula WR 104
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Hydrodynamical simulations of Pinwheel nebula WR 104
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Hydrodynamical simulations of Pinwheel nebula WR 104
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *