Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-d5zgf Total loading time: 3.164 Render date: 2021-03-06T04:25:24.216Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Growth of Supermassive Black Holes, Galaxy Mergers and Supermassive Binary Black Holes

Published online by Cambridge University Press:  27 October 2016

S. Komossa
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany email: skomossa@mpifr.de
J. G. Baker
Affiliation:
NASA/GSFC, Mail Code: 663, Greenbelt, MD 20771
F. K. Liu
Affiliation:
Department of Astronomy, Peking University, Beijing 100871, China
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

The study of galaxy mergers and supermassive binary black holes (SMBBHs) is central to our understanding of the galaxy and black hole assembly and (co-)evolution at the epoch of structure formation and throughout cosmic history. Galaxy mergers are the sites of major accretion episodes, they power quasars, grow supermassive black holes (SMBHs), and drive SMBH-host scaling relations. The coalescing SMBBHs at their centers are the loudest sources of gravitational waves (GWs) in the Universe, and the subsequent GW recoil has a variety of potential astrophysical implications which are still under exploration. Future GW astronomy will open a completely new window on structure formation and galaxy mergers, including the direct detection of coalescing SMBBHs, high-precision measurements of their masses and spins, and constraints on BH formation and evolution in the high-redshift Universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Ackermann, M., et al. 2015, ApJ, in press; arXiv:1509.02063Google Scholar
Arzoumanian, Z., et al. 2015, ApJ, in press; arXiv:1508.03024Google Scholar
Barausse, E., Bellovary, J., Berti, E., Holley-Bockelmann, K., Farris, B., Sathyaprakash, B., & Sesana, A. 2015, Barausse, E., Bellovary, J., Berti, E., et al. 2015, J. Phys. Conf. Ser., 610, 012001 CrossRefGoogle Scholar
Brandt, W. N. & Hasinger, G. 2005, ARA&A, 43, 827 CrossRefGoogle Scholar
Brockamp, M., Baumgardt, H., Britzen, S., & Zensus, A. 2015, A&A, in press; arXiv:1509.04782Google Scholar
Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, Nature, 287, 307 CrossRefGoogle Scholar
Burke-Spolaor, S. 2011, MNRAS, 410, 2113 CrossRefGoogle Scholar
Centrella, J. M. 2003, “What can we learn about cosmic structure from gravitational waves?” in The Emergence of Cosmic Structure: Thirteenth Astrophysics Conference, AIP Conf. Proc., vol. 666, eds. Holt, S. S. & Reynolds, C. S. (AIP: Melville, NY) p. 337 Google Scholar
Centrella, J., Baker, J. G., Kelly, B. J., & van Meter, J. R. 2010, Rev. Mod. Phys., 82, 3069 CrossRefGoogle Scholar
Colpi, M. 2014, SSRv, 183, 189 Google Scholar
Comerford, J. M., Pooley, D., Barrows, R. S., et al. 2015, ApJ, 806, 219 CrossRefGoogle Scholar
Deane, R. P., et al. 2014, Nature, 511, 57 CrossRefGoogle Scholar
De Rosa, G., et al. 2014, ApJ, 790, 145 CrossRefGoogle Scholar
De Rosa, A., et al. 2015, MNRAS, 453, 214 CrossRefGoogle Scholar
D'Orazio, D. J., Haiman, Z., & Schiminovich, D. 2015, Nature, 525, 351 CrossRefGoogle Scholar
Fabbiano, G., Wang, J., Elvis, M., & Risaliti, G. 2011, Nature, 477, 431 CrossRefGoogle Scholar
Fu, H., Myers, A. D., Djorgovski, S. G., et al. 2015, ApJ, 799, 72 CrossRefGoogle Scholar
Graham, A. W. 2015, “Galaxy Bulges and Their Massive Black Holes: A Review,” in Galactic Bulges, eds. Laurikainen, E., Peletier, R. F., & Gadotti, D. A. (Springer: Berlin) in press; arXiv:1501.02937Google Scholar
Graham, M. J., et al. 2015, Nature, 518, 74 CrossRefGoogle Scholar
Hopkins, P. F., Hernquist, L., Cox, T. J., et al. 2006, ApJS, 163, 1 CrossRefGoogle Scholar
Hopkins, P. F. & Hernquist, L. 2009, ApJ, 694, 599 CrossRefGoogle Scholar
Hughes, S. A. 2002, MNRAS, 331, 805 CrossRefGoogle Scholar
Iwasawa, K., et al. 2011, A&A, 529, 106 Google Scholar
Jahnke, K. & Macciò, A. V. 2011, ApJ, 734, 92 CrossRefGoogle Scholar
Kartaltepe, J. S., et al. 2012, ApJ, 757, 23 CrossRefGoogle Scholar
Komossa, S. 2012, Advances in Astronomy, 2012, 364973 CrossRefGoogle Scholar
Komossa, S., Burwitz, V., & Hasinger, G., et al. 2003, ApJ, 582, L15 CrossRefGoogle Scholar
Komossa, S. & Zensus, J. A. 2015, “Compact Object Mergers: Observations of Supermassive Binary Black Holes and Stellar Tidal Disruption Events,” in Star Clusters and Black Holes Across Cosmic Times, Proc. IAU Symp. 312, eds. Meiron, Y. et al. (Cambridge Univ. Press: Cambridge) in press; arXiv:1502.05720Google Scholar
Koss, M. J., et al. 2015, ApJ, 807, 149 CrossRefGoogle Scholar
Kun, E., Frey, S., Gabányi, K. È., et al. 2015, MNRAS, 454, 1290 CrossRefGoogle Scholar
Lentati, L., et al. 2015, MNRAS, 453, 2576 CrossRefGoogle Scholar
Liu, F. K., Wu, X.-B., & Cao, S. L. 2003, MNRAS, 340, 411 CrossRefGoogle Scholar
Liu, F. K., Li, S., & Chen, X. 2009, ApJ, 706, L133 CrossRefGoogle Scholar
Liu, F. K., Li, S., & Komossa, S. 2014, ApJ, 786, 103 CrossRefGoogle Scholar
Liu, T., et al. 2015, ApJ, 803, L16 CrossRefGoogle Scholar
Lousto, C. & Zlochower, Y. 2011, Phys. Rev. Lett., 107, 231102 CrossRefGoogle Scholar
McWilliams, S. T., Ostriker, J. P., & Pretorius, F. 2014, ApJ, 789, 156 CrossRefGoogle Scholar
Menou, K. 2003, Classical Quant. Grav., 20, 37 CrossRefGoogle Scholar
Mortlock, D. J., et al. 2011, Nature, 474, 619 CrossRefGoogle Scholar
Roberts, D. H., Saripalli, L., & Subrahmanyan, R. 2015, ApJ, 810, L6 CrossRefGoogle Scholar
Rodriguez, C., Taylor, G. B., Zavala, R. T., et al. 2006, ApJ, 646, 49 CrossRefGoogle Scholar
Sanders, D. B., Soifer, B. T., Elias, J. H., et al. 1988, ApJ, 325, 74 CrossRefGoogle Scholar
Schutz, B. F. 1986, Nature, 323, 310 CrossRefGoogle Scholar
Sesana, A. 2013, MNRAS, 433, L1 CrossRefGoogle Scholar
Shannon, R. M. et al. 2015, Science, 349, 1522 CrossRefGoogle Scholar
Shen, Y., et al. 2011, ApJS, 194, 45 CrossRefGoogle Scholar
Sperhake, U. 2015, “Gravitational Recoil and Astrophysical Impact,” in Gravitational Wave Astrophysics, Astrophys. Space Sci. Proc., vol. 40, ed. Sopuerta, C. F. (Springer: New York) p. 185 Google Scholar
Stockton, A. & MacKenty, J. W. 1983, Nature, 305, 678 CrossRefGoogle Scholar
Trakhtenbrot, B., et al. 2015, Science, 349, 168 CrossRefGoogle Scholar
Treister, E., Schawinski, K., Urry, C. M., & Simmons, B. D. 2012, ApJ, 758, L39 CrossRefGoogle Scholar
Valtonen, M., Ciprini, S., & Lehto, H. J. 2012, MNRAS, 427, 77 CrossRefGoogle Scholar
van den Bosch, R. C. E., Gebhardt, K., Gültekin, K., et al. 2012, Nature, 491, 729 CrossRefGoogle Scholar
Venemans, B. P., et al. 2015, ApJ, 801, L11 CrossRefGoogle Scholar
Volonteri, M., Sikora, M., Lasota, J.-P., & Merloni, A. 2013, ApJ, 775, 94 CrossRefGoogle Scholar
Volonteri, M., Silk, J., & Dubus, G. 2015, ApJ, 804, 148 CrossRefGoogle Scholar
Villforth, C., et al. 2014, MNRAS, 439, 3342 CrossRefGoogle Scholar
Wang, F., et al. 2015, ApJ, 807, L9 CrossRefGoogle Scholar
Woo, J.-H., Cho, H., Husemann, B., et al. 2014, MNRAS, 437, 32 CrossRefGoogle Scholar
Wrobel, J. M., Walker, R. C., & Fu, H. 2014, ApJ, 792, L8 CrossRefGoogle Scholar
Wu, X.-B., et al. 2015, Nature, 518, 512 CrossRefGoogle Scholar
Yan, C.-S., Lu, Y., Dai, X., & Yu, Q. 2015, ApJ, 809, 117 CrossRefGoogle Scholar
Zhu, X.-J., Wen, L., Hobbs, G., et al. 2014, MNRAS, 444, 3709 CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 131 *
View data table for this chart

* Views captured on Cambridge Core between 27th October 2016 - 6th March 2021. This data will be updated every 24 hours.

Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Growth of Supermassive Black Holes, Galaxy Mergers and Supermassive Binary Black Holes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Growth of Supermassive Black Holes, Galaxy Mergers and Supermassive Binary Black Holes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Growth of Supermassive Black Holes, Galaxy Mergers and Supermassive Binary Black Holes
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *