Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T08:24:38.862Z Has data issue: false hasContentIssue false

GJ 1214b and the prospects for liquid water on super Earths

Published online by Cambridge University Press:  10 November 2011

Leslie A. Rogers
Affiliation:
Department of Physics, Massachusetts Institute of Technology 37-602, 77 Massachusetts Ave., Cambridge, MA 02139, USA email: larogers@mit.edu
Sara Seager
Affiliation:
Department of Earth, Atmospheric, and Planetary Sciences, Department of Physics, Massachusetts Institute of Technology, 54-1626, 77 Massachusetts Ave., Cambridge, MA 02139, USA email: seager@mit.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

GJ 1214b is one of the first discovered transiting planets having mass (6.55 M) and radius (2.678 R) smaller than Neptune. To account for its low average density (1870 kg m−3), GJ 1214b must have a significant gas component. We use interior structure models to constrain GJ 1214b's gas envelope mass, and to explore the conditions needed to achieve within the planet pressures and temperatures conducive to liquid water. We consider three possible origins for the gas layer: direct accretion of gas from the protoplanetary nebula, sublimation of ices, and outgassing from rocky material. Despite having an equilibrium temperature below 647 K (the critical temperature of water) GJ 1214b does not have liquid water under most conditions we consider. Even if the outer envelope is predominantly sublimated water ice, in our model a low intrinsic planet luminosity (less than 2 TW) is needed for the water envelope to pass through the liquid phase; at higher interior luminosities the outer envelope transitions from a vapor to a super-fluid then to a plasma at successively greater depths.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Adams, E. R., Seager, S., & Elkins-Tanton, L. 2008, ApJ, 673, 1160CrossRefGoogle Scholar
Charbonneau, D., Berta, Z. K., Irwin, J., Burke, C. J., Nutzman, P., Buchhave, L. A., Lovis, C., Bonfils, X., Latham, D. W., Udry, S., Murray-Clay, R. A., Holman, M. J., Falco, E. E., Winn, J. N., Queloz, D., Pepe, F., Mayor, M., Delfosse, X., & Forveille, T. 2009, Nature, 462, 891CrossRefGoogle Scholar
Elkins-Tanton, L. T. & Seager, S. 2008, ApJ, 685, 1237CrossRefGoogle Scholar
Hansen, B. M. S. 2008, ApJS, 179, 484CrossRefGoogle Scholar
Miller-Ricci, E., Seager, S., & Sasselov, D. 2009, ApJ, 690, 1056CrossRefGoogle Scholar
Rogers, L. A. & Seager, S. 2010 a, ApJ, 712, 974CrossRefGoogle Scholar
Rogers, L. A. & Seager, S. 2010 b, ApJ, 716, 1208CrossRefGoogle Scholar
Schaefer, L. & Fegley, B. Jr. 2009, ApJ, 703, L113CrossRefGoogle Scholar
Seager, S., Kuchner, M., Hier-Majumder, C. A., & Militzer, B. 2007, ApJ, 669, 1279CrossRefGoogle Scholar
Turcotte, D. L. & Schubert, G. 2002, Geodynamics (Cambridge, UK: Cambridge University Press)CrossRefGoogle Scholar
Valencia, D., Sasselov, D. D., & O'Connell, R. J. 2007, ApJ, 665, 1413CrossRefGoogle Scholar