Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T06:50:16.686Z Has data issue: false hasContentIssue false

Galactic evolution of D, 3He and 4He

Published online by Cambridge University Press:  23 April 2010

Donatella Romano*
Affiliation:
Dept. of Astronomy, Bologna University, Via Ranzani 1, I-40127, Bologna, Italy and INAF-Bologna Observatory, Via Ranzani 1, I-40127, Bologna, Italy email: donatella.romano@oabo.inaf.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The uncertainties which still plague our understanding of the evolution of the light nuclides D, 3He and 4He in the Galaxy are described. Measurements of the local abundance of deuterium range over a factor of 3. The observed dispersion can be reconciled with the predictions on deuterium evolution from standard Galactic chemical evolution models, if the true local abundance of deuterium proves to be high, but not too high, and lower observed values are due to depletion onto dust grains. The nearly constancy of the 3He abundance with both time and position within the Galaxy implies a negligible production of this element in stars, at variance with predictions from standard stellar models which, however, do agree with the (few) measurements of 3He in planetary nebulae. Thermohaline mixing, inhibited by magnetic fields in a small fraction of low-mass stars, could in principle explain the complexity of the overall scenario. However, complete grids of stellar yields taking this mechanism into account are not available for use in chemical evolution models yet. Much effort has been devoted to unravel the origin of the extreme helium-rich stars which seem to inhabit the most massive Galactic globular clusters. Yet, the issue of 4He evolution is far from being fully settled even in the disc of the Milky Way.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Allende-Prieto, C., Lambert, D. L., & Asplund, M. 2001, ApJ, 556, L63CrossRefGoogle Scholar
Anders, E. & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197CrossRefGoogle Scholar
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481Google Scholar
Audouze, J. & Tinsley, B. M. 1974, ApJ, 192, 487CrossRefGoogle Scholar
Balser, D., Rood, R. T., & Bania, T. M. 1999, ApJ, 522, L73CrossRefGoogle Scholar
Bania, T. M., Rood, R. T., & Balser, D. S. 2002, Nature, 415, 54CrossRefGoogle Scholar
Burles, S. & Tytler, D. 1998a, ApJ, 499, 699CrossRefGoogle Scholar
Burles, S. & Tytler, D. 1998b, ApJ, 507, 732CrossRefGoogle Scholar
Carswell, R. F., Rauch, M., Weymann, R. J., Cooke, A. J., & Webb, J. K. 1994, MNRAS, 268, L1CrossRefGoogle Scholar
Casagrande, L., Flynn, C., Portinari, L., Girardi, L., & Jimenez, R. 2007, MNRAS, 382, 1516CrossRefGoogle Scholar
Charbonnel, C. 1995, ApJ, 453, L41CrossRefGoogle Scholar
Charbonnel, C. & Do Nascimento, J. D. Jr., 1998, A&A, 336, 915Google Scholar
Charbonnel, C. & Zahn, J.-P. 2007, A&A, 467, L15Google Scholar
Chiappini, C., Matteucci, F., & Gratton, R. 1997, ApJ, 477, 765CrossRefGoogle Scholar
Chiappini, C., Matteucci, F., & Meynet, G. 2003, A&A, 410, 257Google Scholar
Chiappini, C., Renda, A., & Matteucci, F. 2002, A&A, 395, 789Google Scholar
Chiosi, C. & Matteucci, F. 1982, A&A, 105, 140Google Scholar
Cyburt, R. H., Fields, B. D., & Olive, K. A. 2008, JCAP, 11, 012CrossRefGoogle Scholar
Danziger, I. J. 1970, ARA&A, 8, 161Google Scholar
Dearborn, D. S. P., Steigman, G., & Tosi, M. 1996, ApJ, 465, 887CrossRefGoogle Scholar
Dunkley, J., et al. 2009, ApJS, 180, 306CrossRefGoogle Scholar
Edmunds, M. G. 1994, MNRAS, 270, L37CrossRefGoogle Scholar
Epstein, R. I., Lattimer, J. M., & Schramm, D. N. 1976, Nature, 263, 198CrossRefGoogle Scholar
Galli, D., Palla, F., Ferrini, F., & Penco, U. 1995, ApJ, 443, 536CrossRefGoogle Scholar
Galli, D., Stanghellini, L., Tosi, M., & Palla, F. 1997, ApJ, 477, 218CrossRefGoogle Scholar
Geiss, J. & Gloeckler, G. 1998, Space Sci. Rev., 84, 239CrossRefGoogle Scholar
Geiss, J. & Reeves, H. 1972, A&A, 18, 126Google Scholar
Gloeckler, G. & Geiss, J. 1996, Nature, 381, 210CrossRefGoogle Scholar
Grevesse, N. & Sauval, A. J. 1998, Space Sci. Rev., 85, 161CrossRefGoogle Scholar
Hata, N., Scherrer, R. J., Steigman, G., Thomas, D., Walker, T. P., Bludman, S., & Langacker, P. 1995, Phys. Rev. Lett., 75, 3977CrossRefGoogle Scholar
Hébrard, G., Tripp, T. M., Chayer, P., Friedman, S. D., Dupuis, J., Sonnentrucker, P., Williger, G. M., & Moos, M. W. 2005, ApJ, 635, 1136CrossRefGoogle Scholar
Hogan, G. 1995, ApJ, 441, L17CrossRefGoogle Scholar
Izotov, Y. I. & Thuan, T. X. 1998, ApJ, 500, 188CrossRefGoogle Scholar
Linsky, J. L. 1998, Space Sci. Rev., 84, 285CrossRefGoogle Scholar
Linsky, J. L., et al. 2006, ApJ, 647, 1106CrossRefGoogle Scholar
Lubowich, D. A., Pasachoff, J. M., Balonek, T. J., Millar, T. J., Tremonti, C., Roberts, H. & Galloway, R. P. 2000, Nature, 405, 1025CrossRefGoogle Scholar
Maeder, A. 1992, A&A, 264, 105Google Scholar
Meynet, G. & Maeder, A. 2002, A&A, 390, 561Google Scholar
Matteucci, F., Romano, D., & Molaro, P. 1999, A&A, 341, 458Google Scholar
Norris, J. E. 2004, ApJ, 612, L25CrossRefGoogle Scholar
Olive, K. A., Skillman, E., & Steigman, G. 1997, ApJ, 483, 788CrossRefGoogle Scholar
Pancino, E., Ferraro, F. R., Bellazzini, M., Piotto, G., & Zoccali, M. 2000, ApJ, 534, L83CrossRefGoogle Scholar
Peebles, P. J. E. 1966, Phys. Rev. Lett., 16, 410CrossRefGoogle Scholar
Peimbert, M., Luridiana, V., & Peimbert, A. 2007, ApJ, 666, 636CrossRefGoogle Scholar
Penzias, A. A. & Wilson, R. W. 1965, ApJ, 142, 419CrossRefGoogle Scholar
Pettini, M., Zych, B. J., Murphy, M. T., Lewis, A., & Steidel, C. C. 2008, MNRAS, 391, 1499CrossRefGoogle Scholar
Piotto, G., et al. 2005, ApJ, 621, 777CrossRefGoogle Scholar
Piotto, G., Bedin, L. R., Anderson, J., King, I. R., Cassisi, S., Milone, A. P., Villanova, S., Pietrinferni, A., & Renzini, A. 2007, ApJ, 661, L53CrossRefGoogle Scholar
Prantzos, N. 1996, A&A, 310, 106Google Scholar
Prodanović, T. & Fields, B. D. 2003, ApJ, 597, 48CrossRefGoogle Scholar
Prodanović, T., Steigman, G., & Fields, B. D. 2009, preprint (arXiv:0910.4961)Google Scholar
Reeves, H., Audouze, J., Fowler, W. A., & Schramm, D. N. 1973, ApJ, 179, 909CrossRefGoogle Scholar
Rogers, A. E. E., Dudevoir, K. A., Carter, J. C., Fanous, B. J., Kratzenberg, E., & Bania, T. M. 2005, ApJ, 630, L41CrossRefGoogle Scholar
Romano, D., Tosi, M., Matteucci, F., & Chiappini, C. 2003, MNRAS, 346, 295CrossRefGoogle Scholar
Romano, D., Tosi, M., Chiappini, C., & Matteucci, F. 2006, MNRAS, 369, 295CrossRefGoogle Scholar
Romano, D., Tosi, M., Cignoni, M., Matteucci, F., Pancino, E., & Bellazzini, M. 2010, MNRAS, in press (arXiv:0910.1299)Google Scholar
Rood, R. T., Steigman, G., & Tinsley, B. M. 1976, ApJ, 207, L57CrossRefGoogle Scholar
Sackmann, I.-J. & Boothroyd, A. I. 1999, ApJ, 510, 217CrossRefGoogle Scholar
Scully, S., Cassé, M., Olive, K. A., & Vangioni-Flam, E. 1997, ApJ, 476, 521CrossRefGoogle Scholar
Songaila, A., Cowie, L. L., Hogan, C. J., & Rugers, M. 1994, Nature, 368, 599CrossRefGoogle Scholar
Steigman, G. 2007, Annu. Rev. Nucl. Part. Sci., 57, 463CrossRefGoogle Scholar
Steigman, G. & Tosi, M. 1992, ApJ, 401, 150CrossRefGoogle Scholar
Steigman, G., Romano, D., & Tosi, M. 2007, MNRAS, 378, 576CrossRefGoogle Scholar
Tinsley, B. M. 1974, ApJ, 192, 629CrossRefGoogle Scholar
Tosi, M. 1988, A&A, 197, 33Google Scholar
Tosi, M., Steigman, G., Matteucci, F., & Chiappini, C. 1998, ApJ, 498, 226CrossRefGoogle Scholar
Truran, J. W. & Cameron, A. G. W. 1971, Ap&SS, 14, 179Google Scholar
van den Hoek, L. B. & Groenewegen, M. A. T. 1997, A&AS, 123, 305Google Scholar
Vangioni-Flam, E., Olive, K. A., Prantzos, N. 1994, ApJ, 427, 618CrossRefGoogle Scholar
Wagoner, R. V., Fowler, W. A., & Hoyle, F. 1967, ApJ, 148, 3CrossRefGoogle Scholar
Woosley, S. E. & Weaver, T. A. 1995, ApJS, 101, 181CrossRefGoogle Scholar