Skip to main content Accessibility help
×
Home

Galactic evolution of D, 3He and 4He

  • Donatella Romano (a1)

Abstract

The uncertainties which still plague our understanding of the evolution of the light nuclides D, 3He and 4He in the Galaxy are described. Measurements of the local abundance of deuterium range over a factor of 3. The observed dispersion can be reconciled with the predictions on deuterium evolution from standard Galactic chemical evolution models, if the true local abundance of deuterium proves to be high, but not too high, and lower observed values are due to depletion onto dust grains. The nearly constancy of the 3He abundance with both time and position within the Galaxy implies a negligible production of this element in stars, at variance with predictions from standard stellar models which, however, do agree with the (few) measurements of 3He in planetary nebulae. Thermohaline mixing, inhibited by magnetic fields in a small fraction of low-mass stars, could in principle explain the complexity of the overall scenario. However, complete grids of stellar yields taking this mechanism into account are not available for use in chemical evolution models yet. Much effort has been devoted to unravel the origin of the extreme helium-rich stars which seem to inhabit the most massive Galactic globular clusters. Yet, the issue of 4He evolution is far from being fully settled even in the disc of the Milky Way.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Galactic evolution of D, 3He and 4He
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Galactic evolution of D, 3He and 4He
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Galactic evolution of D, 3He and 4He
      Available formats
      ×

Copyright

References

Hide All
Allende-Prieto, C., Lambert, D. L., & Asplund, M. 2001, ApJ, 556, L63
Anders, E. & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
Audouze, J. & Tinsley, B. M. 1974, ApJ, 192, 487
Balser, D., Rood, R. T., & Bania, T. M. 1999, ApJ, 522, L73
Bania, T. M., Rood, R. T., & Balser, D. S. 2002, Nature, 415, 54
Burles, S. & Tytler, D. 1998a, ApJ, 499, 699
Burles, S. & Tytler, D. 1998b, ApJ, 507, 732
Carswell, R. F., Rauch, M., Weymann, R. J., Cooke, A. J., & Webb, J. K. 1994, MNRAS, 268, L1
Casagrande, L., Flynn, C., Portinari, L., Girardi, L., & Jimenez, R. 2007, MNRAS, 382, 1516
Charbonnel, C. 1995, ApJ, 453, L41
Charbonnel, C. & Do Nascimento, J. D. Jr., 1998, A&A, 336, 915
Charbonnel, C. & Zahn, J.-P. 2007, A&A, 467, L15
Chiappini, C., Matteucci, F., & Gratton, R. 1997, ApJ, 477, 765
Chiappini, C., Matteucci, F., & Meynet, G. 2003, A&A, 410, 257
Chiappini, C., Renda, A., & Matteucci, F. 2002, A&A, 395, 789
Chiosi, C. & Matteucci, F. 1982, A&A, 105, 140
Cyburt, R. H., Fields, B. D., & Olive, K. A. 2008, JCAP, 11, 012
Danziger, I. J. 1970, ARA&A, 8, 161
Dearborn, D. S. P., Steigman, G., & Tosi, M. 1996, ApJ, 465, 887
Dunkley, J., et al. 2009, ApJS, 180, 306
Edmunds, M. G. 1994, MNRAS, 270, L37
Epstein, R. I., Lattimer, J. M., & Schramm, D. N. 1976, Nature, 263, 198
Galli, D., Palla, F., Ferrini, F., & Penco, U. 1995, ApJ, 443, 536
Galli, D., Stanghellini, L., Tosi, M., & Palla, F. 1997, ApJ, 477, 218
Geiss, J. & Gloeckler, G. 1998, Space Sci. Rev., 84, 239
Geiss, J. & Reeves, H. 1972, A&A, 18, 126
Gloeckler, G. & Geiss, J. 1996, Nature, 381, 210
Grevesse, N. & Sauval, A. J. 1998, Space Sci. Rev., 85, 161
Hata, N., Scherrer, R. J., Steigman, G., Thomas, D., Walker, T. P., Bludman, S., & Langacker, P. 1995, Phys. Rev. Lett., 75, 3977
Hébrard, G., Tripp, T. M., Chayer, P., Friedman, S. D., Dupuis, J., Sonnentrucker, P., Williger, G. M., & Moos, M. W. 2005, ApJ, 635, 1136
Hogan, G. 1995, ApJ, 441, L17
Izotov, Y. I. & Thuan, T. X. 1998, ApJ, 500, 188
Linsky, J. L. 1998, Space Sci. Rev., 84, 285
Linsky, J. L., et al. 2006, ApJ, 647, 1106
Lubowich, D. A., Pasachoff, J. M., Balonek, T. J., Millar, T. J., Tremonti, C., Roberts, H. & Galloway, R. P. 2000, Nature, 405, 1025
Maeder, A. 1992, A&A, 264, 105
Meynet, G. & Maeder, A. 2002, A&A, 390, 561
Matteucci, F., Romano, D., & Molaro, P. 1999, A&A, 341, 458
Norris, J. E. 2004, ApJ, 612, L25
Olive, K. A., Skillman, E., & Steigman, G. 1997, ApJ, 483, 788
Pancino, E., Ferraro, F. R., Bellazzini, M., Piotto, G., & Zoccali, M. 2000, ApJ, 534, L83
Peebles, P. J. E. 1966, Phys. Rev. Lett., 16, 410
Peimbert, M., Luridiana, V., & Peimbert, A. 2007, ApJ, 666, 636
Penzias, A. A. & Wilson, R. W. 1965, ApJ, 142, 419
Pettini, M., Zych, B. J., Murphy, M. T., Lewis, A., & Steidel, C. C. 2008, MNRAS, 391, 1499
Piotto, G., et al. 2005, ApJ, 621, 777
Piotto, G., Bedin, L. R., Anderson, J., King, I. R., Cassisi, S., Milone, A. P., Villanova, S., Pietrinferni, A., & Renzini, A. 2007, ApJ, 661, L53
Prantzos, N. 1996, A&A, 310, 106
Prodanović, T. & Fields, B. D. 2003, ApJ, 597, 48
Prodanović, T., Steigman, G., & Fields, B. D. 2009, preprint (arXiv:0910.4961)
Reeves, H., Audouze, J., Fowler, W. A., & Schramm, D. N. 1973, ApJ, 179, 909
Rogers, A. E. E., Dudevoir, K. A., Carter, J. C., Fanous, B. J., Kratzenberg, E., & Bania, T. M. 2005, ApJ, 630, L41
Romano, D., Tosi, M., Matteucci, F., & Chiappini, C. 2003, MNRAS, 346, 295
Romano, D., Tosi, M., Chiappini, C., & Matteucci, F. 2006, MNRAS, 369, 295
Romano, D., Tosi, M., Cignoni, M., Matteucci, F., Pancino, E., & Bellazzini, M. 2010, MNRAS, in press (arXiv:0910.1299)
Rood, R. T., Steigman, G., & Tinsley, B. M. 1976, ApJ, 207, L57
Sackmann, I.-J. & Boothroyd, A. I. 1999, ApJ, 510, 217
Scully, S., Cassé, M., Olive, K. A., & Vangioni-Flam, E. 1997, ApJ, 476, 521
Songaila, A., Cowie, L. L., Hogan, C. J., & Rugers, M. 1994, Nature, 368, 599
Steigman, G. 2007, Annu. Rev. Nucl. Part. Sci., 57, 463
Steigman, G. & Tosi, M. 1992, ApJ, 401, 150
Steigman, G., Romano, D., & Tosi, M. 2007, MNRAS, 378, 576
Tinsley, B. M. 1974, ApJ, 192, 629
Tosi, M. 1988, A&A, 197, 33
Tosi, M., Steigman, G., Matteucci, F., & Chiappini, C. 1998, ApJ, 498, 226
Truran, J. W. & Cameron, A. G. W. 1971, Ap&SS, 14, 179
van den Hoek, L. B. & Groenewegen, M. A. T. 1997, A&AS, 123, 305
Vangioni-Flam, E., Olive, K. A., Prantzos, N. 1994, ApJ, 427, 618
Wagoner, R. V., Fowler, W. A., & Hoyle, F. 1967, ApJ, 148, 3
Woosley, S. E. & Weaver, T. A. 1995, ApJS, 101, 181
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Galactic evolution of D, 3He and 4He

  • Donatella Romano (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.