Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-19T07:45:29.677Z Has data issue: false hasContentIssue false

Galactic evolution of 7Li

Published online by Cambridge University Press:  23 April 2010

Francesca Matteucci*
Affiliation:
Department of Physics, Astronomy Division, Trieste University, ItalyVia G. B. Tiepolo, 11 34134 Trieste, Italy email: matteucc@oats.inaf.it INAF, Trieste Via G. B. Tiepolo, 11 34134 Trieste, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lithium represents a key element in cosmology, as it is one of the few nuclei synthesized during the Big Bang. The primordial abundance of 7Li allows us to impose constraints on the primordial nucleosynthesis and on the baryon density of the universe. However, 7Li is not only produced during the Big Bang but also during galactic evolution: measures of stellar Li in our Galaxy suggest an almost constant Li abundance (the so-called Spite plateau) at low metallicities and a subsequent increase in the disk stars, leading to a Li abundance in Population I stars higher by a factor of ten than in Population II stars. This means that there must exist several possible stellar sources of 7Li: asymptotic giant branch stars, supernovae, novae, red giant stars. 7Li is also partly produced in spallation processes while 6Li is entirely produced by such processes. All of these sources have been included in galactic chemical evolution models and constraints have been derived on the primordial 7Li and its evolution, as well on stellar models. I will review these models and their results and what we have learned about 7Li evolution. Some still open problems, such as the disagreement between the primordial 7Li abundance as derived by WMAP and as measured in Population II stars, and the uncertainties about the main sources of stellar 7Li will be discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Asplund, M., Lambert, D. L., Nissen, P. E., Primas, F., & Smith, V. V. 2006, ApJ, 644, 229CrossRefGoogle Scholar
Bonifacio, P. & Molaro, P. 1997, MNRAS, 285, 874Google Scholar
Bonifacio, P.Pasquini, L., Spite, F., Bragaglia, A., Carretta, E. et al. 2002, A&A, 390, 91Google Scholar
Bonifacio, P., Pasquini, L., Molaro, P., Carretta, E., François, P., Gratton, R. G., James, G., Sbordone, L., Spite, F., & Zoccali, M. 2007, A&A, 470, 153Google Scholar
Cameron, A. G. W. & Fowler, W. A. 1971, ApJ, 164, 111Google Scholar
Charbonnel, C. & Primas, F. 2005, A&A, 442, 961Google Scholar
Chen, Y. Q., Nissen, P. E., Benoni, T., & Zhao, G. 2001, A&A, 371, 943Google Scholar
D'Antona, F. & Matteucci, F. 1991, A&A, 284, 62Google Scholar
de la Reza, R., da Silva, L., Drake, N. A., & Terra, M. A. 2000, ApJ (Letters), 535, 115CrossRefGoogle Scholar
Della Valle, M., Pasquini, L., Daou, D., & William, R. E. 2002, A&A, 155, 166Google Scholar
Duncan, D. K., Primas, F., Rebull, L. M., Boesgaard, A. M., Delyiannis, C. P., et al. 1997, ApJ, 488, 338Google Scholar
Gratton, R. 1991, Mem. S. A. It., 62, 53Google Scholar
Hinshaw, G., Weiland, J. L., Hill, R. S., Odegard, N., Larson, D., et al. 2009, ApJS, 180, 225Google Scholar
José, J. & Hernanz, M. 1998, ApJ, 494, 680CrossRefGoogle Scholar
Korn, A., Grundohl, F., Richard, O, Barklem, P. S., Mashonkina, L., Collet, R., Piskunov, N., & Gustafsson, B. 2006, Nature, 442, 657Google Scholar
Lambert, D. L. & Reddy, B. E. 2004, MNRAS, 349, 757CrossRefGoogle Scholar
Lemoine, M., Vangioni-Flam, E., & Cassé, M. 1998, ApJ, 499, 735Google Scholar
Mathews, G. J., Alcock, C. R., & Fuller, G. M. 1990, ApJ, 449, 457Google Scholar
Matteucci, F. 2001, “The chemical evolution of the Galaxy”, AASSL, Kluwer Academic PublishersGoogle Scholar
Melendez, J., Ramirez, I., Casagrande, L., Asplund, M., Gustafsson, B., Yong, D., do Nascimento, J. D. Jr. et al. 2009, astro-ph/090105845Google Scholar
Rebolo, R., Beckman, J. E., & Molaro, P. 1988, A&A, 192, 192Google Scholar
Reeves, H. 1994, Rev. Mod. Phys, 66, 193Google Scholar
Richard, O., Michaud, G., & Richer, J. 2005, ApJ, 619, 538Google Scholar
Romano, D., Matteucci, F., Ventura, P., & D'Antona, F. 2001, A&A, 374, 646Google Scholar
Romano, D., Tosi, M., Matteucci, F., & Chiappini, C. 2003, MNRAS, 346, 295CrossRefGoogle Scholar
Ryan, S. G., Kajino, T., Beers, T. C., Suzuki, T. K., Romano, D., Matteucci, F., & Rosolankova, K. 2001, ApJ, 549, 55Google Scholar
Ryan, S. G., Norris, J. E., & Beers, T. C. 1999, ApJ, 523, 654CrossRefGoogle Scholar
Sackmann, I.-J. & Boothroyd, A. I. 1999, ApJ, 510, 217Google Scholar
Smith, V. V. & Lambert, D. L. 1989, ApJ (Letters), 354, 75CrossRefGoogle Scholar
Smith, V. V. & Lambert, D. L. 1990, ApJ (Letters), 361, 69Google Scholar
Spergel, D. N., Verde, L., Peiris, H. V., Komatsu, E., Nolta, M. R. et al. 2003, ApJS, 148, 175CrossRefGoogle Scholar
Spite, F. & Spite, M. 1982, A&A, 115, 357Google Scholar
Starrfield, S., Truran, J. W., Sparks, W. M., & Arnould, M. 1978, ApJ, 222, 600CrossRefGoogle Scholar
Thorburn, J. A. 1994, ApJ, 421, 318Google Scholar
Travaglio, C., Randich, S., Galli, D., Lattanzio, J., Elliott, L. M., Forestini, M., & Ferrini, F. 2001, ApJ, 559, 909Google Scholar
Ventura, P., Zeppieri, A., Mazzitelli, I., & D'Antona, F. 1998, A&A, 334, 953Google Scholar
Woosley, S. E., Hartman, D. H., Hoffman, R. D., & Haxton, W. C. 1990, ApJ, 356, 272Google Scholar
Woosley, S. E. & Weaver, T. A. 1995, ApJS, 101, 181Google Scholar