Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T04:08:40.971Z Has data issue: false hasContentIssue false

Fragmentation in turbulent primordial gas

Published online by Cambridge University Press:  27 April 2011

S. C. O. Glover
Affiliation:
Institut für Theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany
P. C. Clark
Affiliation:
Institut für Theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany
R. S. Klessen
Affiliation:
Institut für Theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany
V. Bromm
Affiliation:
Department of Astronomy, University of Texas, Austin, TX 78712
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report results from numerical simulations of star formation in the early universe that focus on the role of subsonic turbulence, and investigate whether it can induce fragmentation of the gas. We find that dense primordial gas is highly susceptible to fragmentation, even for rms turbulent velocity dispersions as low as 20% of the initial sound speed. The resulting fragments cover over two orders of magnitude in mass, ranging from ~0.1 M to ~40 M. However, our results suggest that the details of the fragmentation depend on the local properties of the turbulent velocity field and hence we expect considerable variations in the resulting stellar mass spectrum in different halos.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Abel, T., Bryan, G. L., & Norman, M. L. 2002, Science, 295, 93CrossRefGoogle Scholar
Bate, M. R., Bonnell, I. A., & Price, N. M. 1995, MNRAS, 277, 362CrossRefGoogle Scholar
Bonnell, I. A., Bate, M. R., Clarke, C. J., & Pringle, J. E. 2001a, MNRAS, 323, 785CrossRefGoogle Scholar
Bonnell, I. A., Vine, S. G., & Bate, M. R. 2004, MNRAS, 349, 735CrossRefGoogle Scholar
Bromm, V. & Larson, R. B. 2004, ARA&A, 42, 79Google Scholar
Bromm, V. & Loeb, A. 2004, New Astron. 9, 353CrossRefGoogle Scholar
Bromm, V., Yoshida, N., Hernquist, L. & McKee, C. F. 2009, Nature, 459, 49CrossRefGoogle Scholar
Clark, P. C., Glover, S. C. O., & Klessen, R. S. 2008, ApJ, 672, 757CrossRefGoogle Scholar
Clark, P. C., Glover, S. C. O., Klessen, R. S., & Bromm, V. 2010, ApJ, submitted; arXiv:1006.1508Google Scholar
Glover, S. 2005, Space Sci. Rev., 117, 445CrossRefGoogle Scholar
Glover, S. C. O. & Abel, T. 2008, MNRAS, 388, 1627CrossRefGoogle Scholar
Jappsen, A.-K., Klessen, R. S., Larson, R. B., Li, Y. & Mac Low, M.-M. 2005, A&A, 435, 611Google Scholar
Machida, M. N. 2008, ApJ, 682, L1CrossRefGoogle Scholar
Machida, M. N., Omukai, K., Matsumoto, T., & Inutsuka, S.-I. 2009, MNRAS, 399, 1255CrossRefGoogle Scholar
McKee, C. F. & Tan, J. C. 2008, ApJ, 681, 771CrossRefGoogle Scholar
Schmeja, S. & Klessen, , 2004, A&A, 419, 405Google Scholar
Springel, V. 2005, MNRAS, 364, 1105CrossRefGoogle Scholar
Stacy, A., Greif, T. H., & Bromm, V. 2010, MNRAS, 403, 45CrossRefGoogle Scholar
Turk, M. J., Abel, T., & O'Shea, B. W. 2009, Science, 325, 601CrossRefGoogle Scholar