Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T03:00:08.763Z Has data issue: false hasContentIssue false

Flows and obstacles in the heliosphere

Published online by Cambridge University Press:  01 September 2008

John D. Richardson*
Affiliation:
Kavli Center for Astrophysics and Space Science, Room 37-655, M.I.T., Cambridge, MA USA 02139 email: jdr@space.mit.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The supersonic solar wind is highly variable on all time scales near the Sun but fluctuations are moderated by self-interaction as this plasma moves outward. The solar wind runs into many obstacles on its way out. The neutrals from the interstellar medium slow it down. Magnetospheres and interplanetary coronal mass ejections (ICMEs) cause shocks to form so that the flow can divert around these obstacles. Finally the solar wind is stopped by the circum-heliospheric interstellar medium (CHISM); it slows at the termination shock and then turns down the heliotail. The shocks and sheaths formed by these interactions cover scales which vary by orders of magnitude; some aspects of these shocks and sheaths look very similar and some very different. We discuss solar wind evolution, interaction with the neutrals from the CHISM, foreshocks, shock structure, shock heating, asymmetries, and sheath variability in different sheath regions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Burlaga, L. F., Ness, N. F., Acuna, M. H., Lepping, R. P., Connerney, J. E. P., & Richardson, J. D. 2008 Observations of magnetic fields at the termination shock by Voyager 2, Nature, 454, 7577.CrossRefGoogle Scholar
Decker, R. B., Krimigis, S. M., Roelof, E. C., Hill, M. E., Armstrong, T. P., Gloeckler, G., Hamilton, D. C., & Lanzerotti, L. J. 2005 Voyager 1 in the foreshock, termination shock, and heliosheath. Science 309, 2020 - 2024 DOI: 10.1126/science.1117569.CrossRefGoogle Scholar
Decker, R. B., Krimigis, S. M., Roelof, E. C., & Hill, M. E. 2006, Low-energy ions near the termination shock. In Physics of the Inner Heliosheath: Voyager Observations, Theory, and Future Prospects, AIP Conference Proceedings 258, pp. 73-78.Google Scholar
Decker, R. B., Krimigis, S. M., Roelof, E. C., & Hill, M. E. 2007 Eos Trans. AGU, 88 (52), Fall Meet. Suppl., Abstract SH11A-05,.Google Scholar
Decker, R. B. et al. 2008 Shock that terminates the solar wind is mediated by non-thermal ions. Nature, 454, 6770.CrossRefGoogle ScholarPubMed
Dmitriev, A. V., Suvorova, A. V., Chao, J. K., & Yang, Y.-H. 2004, Dawn-dusk asymmetry of geosynchronous magnetopause crossings. J. Geophys. Res., 109, A05203.Google Scholar
Formisano, V., Hedgecock, P. C., Moreno, G., Palmiotto, F., & Chao, J. K. 1973, Solar wind interaction with the Earth's magnetic field, 2. Magnetohydrodynamic bow shock, J. Geophys. Res. 78 3731.CrossRefGoogle Scholar
Fuselier, S. A. & Schmidt, W. K. H. 1994 J. Geophys. Res., 99, 1153911546.CrossRefGoogle Scholar
Gloeckler, G., Fisk, L. A., & Lanzerotti, L. J. 2005 Acceleration of Solar Wind and Pickup Ions by Shocks. In Solar Wind 11/SOHO 16 Programme and Abstract Book (pdf file), European Space Agency, 52.Google Scholar
Isenberg, P. A, Smith, C. W., Matthaeus, W. H., & Richardson, J. D. 2005 Turbulent heating of the distant solar wind by interstellar pickup protons with a variable solar wind speed. In Proceedings of Solar Wind 11: Connecting Sun and Heliosphere, ESA SP-592 (Fleck, B. & Zurbuchen, T. H., eds.), European Space Agency, The Netherlands, 347350.Google Scholar
Krimigis, S. M., Decker, R. B., Hill, M. E., Armstrong, T. P., Gloeckler, G., Hamilton, D. C., Lanzerotti, L. J., & Roelof, E. C. 2003 Voyager 1 exited the solar wind at a distance of 85 AU from the Sun. Nature, 426, 4548, 10.1038/nature02068.CrossRefGoogle Scholar
Linde, T. J., Gombosi, T. I., Roe, P. L., Powell, K. G., & DeZeeuw, D. L. 1998 Heliosphere in the Magnetized Local Interstellar Medium: Results of a Three-Dimensional MHD Simulation, J. Geophys. Res., 103, 18891904.CrossRefGoogle Scholar
McDonald, F. B. et al. 2003 Enhancements of energetic particles near the heliospheric termination shock Nature, 426, 4851.CrossRefGoogle ScholarPubMed
McComas, D. J. & Schwadron, N. A. 2006 An explanation of the Voyager paradox: particle acceleration at a blunt termination shock. Geophys. Res. Lett., 33 L04102.CrossRefGoogle Scholar
McComas, D. J., Ebert, R. W., Elliot, H. A., Goldstein, B. E. & Gosling, J. T. 2008. Weaker solar wind from the polar coronal holes and the whole Sun, submitted to Geophys. Res. Lett.CrossRefGoogle Scholar
Opher, M., Stone, E. C., & Gombosi, T. I. 2007, The orientation of the local interstellar magnetic field, Science, 316, 875878 DOI: 10.1126/science.1139480.CrossRefGoogle ScholarPubMed
Pogorelov, N. V., Stone, E. C., Florinski, V., & Zank, G. P. 2007 Termination shock asymmetries as seen by the Voyager spacecraft: The role of the interstellar magnetic field and neutral hydrogen. Astrophys. J. 668, 624.CrossRefGoogle Scholar
Richardson, J. D. & Smith, C. W. 2003 The radial temperature profile of the solar wind. Geophys. Res. Lett., 30, 12061209, 10.1029/2002GL016551.CrossRefGoogle Scholar
Richardson, J. D., Liu, Y., Wang, C., & McComas, D. J. 2008 Determining the LIC H density from the solar wind slowdown. Astron. Astrophys., in press.CrossRefGoogle Scholar
Richardson, J. D., Kasper, J. C., Wang, C., Belcher, J. W., & Lazarus, A. J. 2008 Termination shock decelerates upstream solar wind but heliosheath plasma is cool, Nature, 454, 6366.CrossRefGoogle ScholarPubMed
Sckopke, N., Paschmann, G., Bame, S. J., Gosling, J. T., & Russell, C. T. 1983 J. Geophys. Res., 88, 61216136.CrossRefGoogle Scholar
Siscoe, G., MacNeice, P. J., & Odstrcil, D. 2007, East-west asymmetry in coronal mass ejection geoeffectiveness, Space Weather, 5, S04002, doi:10.1029/2006SW000286.CrossRefGoogle Scholar
Smith, C. W., Isenberg, P. A., Matthaeus, W. H., & Richardson, J. D. 2006 Turbulent Heating of the Solar Wind by Newborn Interstellar Pickup Protons. Astrophys J., 638, 508517.CrossRefGoogle Scholar
Stone, E. C. et al. 2008. Voyager 2 finds an asymmetric termination shock & explores the heliosheath beyond. Nature, 454, 7174.CrossRefGoogle Scholar
Stone, E. C., Cummings, A. C., McDonald, F. B., Heikkila, B., Lal, N., & Webber, W. R. 2005 Voyager 1 explores the termination shock region and the heliosheath beyond. Science, 309, 20172020.CrossRefGoogle ScholarPubMed
Wang, L., Lin, R. P., Larson, D. E., & Luhmann, J. G. 2008 Domination of heliosheath pressure by shock-accelerated pickup ions from observations of neutral atoms, Nature 454, 8183.CrossRefGoogle ScholarPubMed
Zank, G., Pauls, H., Cairns, I., & Webb, G. 1996 Interstellar pickup ions and quasi-perpendicular shocks: Implications for the termination shock and interplanetary shocks. J. Geophys. Res. 101, 457.CrossRefGoogle Scholar
Zank, G. P. & Meuller, H.-R. 2003, The dynamical heliosphere, J. Geophys. Res., 108, 1240.Google Scholar