Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-25T10:24:04.050Z Has data issue: false hasContentIssue false

Feedback from supermassive and intermediate-mass black holes at galaxy centers using cosmological hydrodynamical simulations

Published online by Cambridge University Press:  29 January 2021

Paramita Barai*
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas – Universidade de São Paulo (IAG-USP), Rua do Matão 1226, São Paulo, 05508-090, Brasil email: paramita.barai@iag.usp.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Accretion of matter onto central Black Holes (BHs) in galaxies liberates enormous amounts of feedback energy, which affects the environment from pc to Mpc scales. These BHs are usually Supermassive BHs (SMBHs: mass ⩾106M) existing at the centers of active galactic nuclei (AGN), which are widely observed through their multi-wavelength emission at all cosmic epochs. Relatively recently, Intermediate-Mass BHs (IMBHs: mass = 100−106M) have started to be observed hosted in Dwarf Galaxy (DG) centers. Some of the central IMBHs in DGs show signatures of activity in the form of low-luminosity AGN. We have performed Cosmological Hydrodynamical Simulations to probe SMBHs in high-z quasars (Barai et al. 2018), and IMBHs in DGs (Barai & de Gouveia Dal Pino 2019). Our simulations employ the 3D TreePM SPH code GADGET-3, and include metal cooling, star formation, chemical enrichment, stellar evolution, supernova feedback, AGN accretion and feedback. Analyzing the simulation output in post-processing, we investigate the growth of the first IMBHs and the first SMBHs, as well as their impact on star-formation.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Barai, P., Viel, M., Murante, G., Gaspari, M., & Borgani, S. 2014, MNRAS, 437, 145610.1093/mnras/stt1977CrossRefGoogle Scholar
Barai, P., Murante, G., Borgani, S., Gaspari, M., Granato, G. L., Monaco, P., & Ragone-Figueroa, C. 2016, MNRAS, 461, 154810.1093/mnras/stw1389CrossRefGoogle Scholar
Barai, P., Gallerani, S., Pallottini, A., Ferrara, A., Marconi, A., Cicone, C., Maiolino, R., & Carniani, S. 2018, MNRAS, 473, 400310.1093/mnras/stx2563CrossRefGoogle Scholar
Barai, P. & de Gouveia Dal Pino, E. M. 2019, MNRAS, 487, 554910.1093/mnras/stz1616CrossRefGoogle Scholar
Crenshaw, D. M., Kraemer, S. B., & George, I. M. 2003, ARA&A, 41, 11710.1146/annurev.astro.41.082801.100328CrossRefGoogle Scholar
Fan, X. 2006, NewAR, 50, 66510.1016/j.newar.2006.06.077CrossRefGoogle Scholar
Hahn, O. & Abel, T. 2011, MNRAS, 415, 210110.1111/j.1365-2966.2011.18820.xCrossRefGoogle Scholar
Maiolino, R. et al. 2012, MNRAS, 425, L6610.1111/j.1745-3933.2012.01303.xCrossRefGoogle Scholar
Marleau, F. R., Clancy, D., Habas, R., & Bianconi, M. 2017, A&A, 602, A28Google Scholar
Matsumoto, T., Nakauchi, D., Ioka, K., Heger, A., & Nakamura, T. 2015, ApJ, 810, 6410.1088/0004-637X/810/1/64CrossRefGoogle Scholar
Penny, S. J. et al. 2017, submitted to MNRAS, eprint arXiv:1710.07568Google Scholar
Rees, M. J. 1984, ARA&A, 22, 47110.1146/annurev.aa.22.090184.002351CrossRefGoogle Scholar
Richstone, D. et al. 1998, Nature, 395, A14Google Scholar
Scannapieco, E., Silk, J., & Bouwens, R. 2005, ApJ, 635, L1310.1086/499271CrossRefGoogle Scholar
Schawinski, K. et al. 2006, Nature, 442, 88810.1038/nature04934CrossRefGoogle Scholar
Silk, J. 2017, ApJ, 839, L1310.3847/2041-8213/aa67daCrossRefGoogle Scholar
Springel, V. 2005, MNRAS, 364, 110510.1111/j.1365-2966.2005.09655.xCrossRefGoogle Scholar
Wu, X.-B. et al. 2015, Nature, 518, 51210.1038/nature14241CrossRefGoogle Scholar