Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-ls6xp Total loading time: 0.317 Render date: 2022-11-28T03:12:58.672Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Extragalactic Stellar Astronomy with the Brightest Stars in the Universe

Published online by Cambridge University Press:  01 December 2007

Rolf Kudritzki
Affiliation:
Institute for Astronomy, University of Hawaii2680 Woodlawn Drive, Honolulu, HI 96822, USA email: kud@ifa.hawaii.edu, urbaneja@ifa.hawaii.edu, bresolin@ifa.hawaii.edu
Miguel A. Urbaneja
Affiliation:
Institute for Astronomy, University of Hawaii2680 Woodlawn Drive, Honolulu, HI 96822, USA email: kud@ifa.hawaii.edu, urbaneja@ifa.hawaii.edu, bresolin@ifa.hawaii.edu
Fabio Bresolin
Affiliation:
Institute for Astronomy, University of Hawaii2680 Woodlawn Drive, Honolulu, HI 96822, USA email: kud@ifa.hawaii.edu, urbaneja@ifa.hawaii.edu, bresolin@ifa.hawaii.edu
Norbert Przybilla
Affiliation:
Dr. Remeis-Sternwarte Bamberg, Erlangen UniversitySternwartstr. 7, D-96049 Bamberg, Germany email: przybilla@sternwarte.uni-erlangen.de
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A supergiants are objects in transition from the blue to the red (and vice versa) in the uppermost HRD. They are the intrinsically brightest “normal” stars at visual light with absolute visual magnitudes up to −9. They are ideal to study young stellar populations in galaxies beyond the Local Group to determine chemical composition and evolution, interstellar extinction, reddening laws and distances. We discuss most recent results on the quantitative spectral analysis of such objects in galaxies beyond the Local Group based on medium and low resolution spectra obtained with the ESO VLT and Keck. We describe the analysis method including the determination of metallicity and metallicity gradients. A new method to measure accurate extragalactic distances based on the stellar gravities and effective temperatures is presented, the flux weighted gravity – luminosity relationship (FGLR). The FGLR is a purely spectroscopic method, which overcomes the uncertainties introduced by interstellar extinction and variations of metallicity, which plague all photometric stellar distance determination methods. We discuss the perspectives of future work using the giant ground-based telescopes of the next generation such as the TMT, the GMT and the E-ELT.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Allende Prieto, C., Lambert, D. L., & Asplund, M. 2001, ApJ, 556, L63CrossRefGoogle Scholar
Aufdenberg, J. P., Hauschildt, P. H., Baron, E. et al. 2002, ApJ, 570, 344CrossRefGoogle Scholar
Bresolin, F., Kudritzki, R.-P., Méndez, R. H., & Przybilla, N. 2001, ApJ, 548, L159CrossRefGoogle Scholar
Bresolin, F., Gieren, W., Kudritzki, R.-P., et al. 2002, ApJ, 567, 277CrossRefGoogle Scholar
Bresolin, F., Pietrzyński, G., Gieren, W., et al. 2004, ApJ, 600, 182CrossRefGoogle Scholar
Bresolin, F., Pietrzyński, G., Gieren, W. & Kudritzki, R. P. 2005, ApJ, 634, 1020CrossRefGoogle Scholar
Deharveng, L., Caplan, J., Lequeux, J., et al. 1988, A&AS, 73, 407Google Scholar
Denicolo, G., Terlevich, R. & Terlevich, E. 2002, MNRAS, 330, 69CrossRefGoogle Scholar
Dopita, M. A., Evans, I. N. 1986, ApJ, 307, 431CrossRefGoogle Scholar
Evans, C. J. & Howarth, I. D. 2003, MNRAS, 345, 1223CrossRefGoogle Scholar
Freedman, et al. 2001, ApJ, 553, 47CrossRefGoogle Scholar
Gieren, W., Pietrzyński, G., Soszynski, I., et al. 2005, ApJ, 628, 695CrossRefGoogle Scholar
Gieren, W. et al. 2005, ESO Messenger, 121, 23Google Scholar
Groth, H. G. 1961, ZAp, 51, 231Google Scholar
Kaufer, A., Venn, K. A., Tolstoy, E., et al. 2004, AJ, 127, 2723CrossRefGoogle Scholar
Kobulnicky, H. A., Kennicutt, R. C. & Pizagno, J. L. 1999, ApJ, 514, 544CrossRefGoogle Scholar
Kudritzki, R.-P. 1973, A&A, 28, 103Google Scholar
Kudritzki, R.-P., 1998, in: Aparicio, A., Herrero, A. & Sanchez, F. (eds.), Stellar Physics for the Local Group (Cambridge: CUP) 149Google Scholar
Kudritzki, R.-P., Bresolin, F., & Przybilla, N. 2003, ApJ, 582, L83CrossRefGoogle Scholar
Kudritzki, R.-P., Lennon, D. J. & Puls, J. 1995, in: Welsh, J. R. & Danziger, I. J. (eds.), Science with VLT, (Berlin: Springer-Verlag), 246CrossRefGoogle Scholar
Kudritzki, R.-P., Puls, J., Lennon, D. J. et al. 1999, A&A, 350, 970Google Scholar
Kudritzki, R.-P., Urbaneja, M. A., Bresolin, F., et al. 2008, ApJ, in press (astro-ph/0803.3654)Google Scholar
McCarthy, J. K., Lennon, D. J., Venn, K. A., et al. 1995, ApJ, 455, L135CrossRefGoogle Scholar
McCarthy, J. K., Kudritzki, R. P., Lennon, D. J., et al. 1997, ApJ, 482, 757CrossRefGoogle Scholar
Meynet, , & Maeder, A. 2005, A&A, 429, 581Google Scholar
Pettini, M. & Pagel, B. E.J. 2004, MNRAS, 348, L59CrossRefGoogle Scholar
Pilyugin, L. S. 2001, A&A, 369, 594Google Scholar
Przybilla, N., Butler, K., Becker, S. R., et al. 2000, A&A, 359, 1085Google Scholar
Przybilla, N., Butler, K., Becker, S. R., & Kudritzki, R. P. 2001a A&A, 369, 1009Google Scholar
Przybilla, N., Butler, K. & Kudritzki, R. P. 2001b, A&A, 379, 936Google Scholar
Przybilla, N. & Butler, K. 2001, A&A, 379, 955Google Scholar
Przybilla, N. 2002, thesis, Fakultaet fuer Physik, Ludwig-Maximilian University, MunichGoogle Scholar
Przybilla, N., Butler, K., Becker, S. R., & Kudritzki, R. P. 2006, A&A, 445, 1099Google Scholar
Przybilla, N., Butler, K., & Kudritzki, R. P. 2008, in: Israelian, G. & Meynet, G. (eds.), The Metal-Rich Universe, (Cambridge: CUP), in press (astro-ph/0611044)Google Scholar
Schiller, F. & Przybilla, N. 2008, A&A, 479, 849Google Scholar
Urbaneja, M. A., Herrero, A. J., Bresolin, F., et al. 2005, ApJ, 622, 877CrossRefGoogle Scholar
Venn, K. A. 1995a, ApJS, 99, 659CrossRefGoogle Scholar
Venn, K. A. 1995a, ApJ, 449, 839CrossRefGoogle Scholar
Venn, K. A. 1999, ApJ, 518, 405CrossRefGoogle Scholar
Venn, K. A., Lennon, D. J., Kaufer, A., et al. 2001, 547, 765Google Scholar
Venn, K. A., McCarthy, J. K., Lennon, D. J., et al. 2000, ApJ, 541, 610CrossRefGoogle Scholar
Venn, K. A., Tolstoy, E., Kaufer, A. et al. 2003, AJ, 126, 1326CrossRefGoogle Scholar
Wolf, B. 1971, A&A, 10, 383Google ScholarPubMed
Wolf, B. 1972, A&A, 20, 275Google ScholarPubMed
Wolf, B. 1973, A&A, 28, 335Google Scholar
Zaritski, D., Kennicutt, R. C. & Huchra, J. P. 1994, ApJ, 420, 87CrossRefGoogle Scholar
You have Access

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Extragalactic Stellar Astronomy with the Brightest Stars in the Universe
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Extragalactic Stellar Astronomy with the Brightest Stars in the Universe
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Extragalactic Stellar Astronomy with the Brightest Stars in the Universe
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *