Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T17:51:18.524Z Has data issue: false hasContentIssue false

Evolution of the ISM in main-sequence versus starburst galaxies: A motivation for molecular deep fields

Published online by Cambridge University Press:  12 September 2016

Manuel Aravena*
Affiliation:
Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales Av. Ejército 441, SantiagoChile email: manuel.aravenaa@mail.udp.cl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the last decade, significant progress has been made to understand the evolution with redshift of star formation processes in galaxies. Its is now clear that the majority of galaxies at z<3 form a nearly linear correlation between their stellar mass and star formation rates and appear to create most of their stars in timescales of ~1 Gyr. At the highest luminosities, a significant fraction of galaxies deviate from this main-sequence, showing short duty cycles and thus producing most of their stars in a single burst of star formation within ~100 Myr, being likely driven by major merger activity. Despite the large luminosities of starbursts, main-sequence galaxies appear to dominate the star formation density of the Universe at its peak.

While progress has been impressive, a number of questions are still unanswered. In this paper, I briefly review our current observational understanding of this main-sequence vs starburst galaxy paradigm, and address how future observations will help us to have better insights into the fundamental properties of the interstellar medium of these galaxies. Finally, I show recent attempts to conduct molecular deep field observations and the motivation to perform molecular deep field spectroscopy with the Atacama Large Millimeter/submillimeter Array.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Aravena, M. et al. 2010, ApJ, 718, 177 Google Scholar
Aravena, M. et al. 2014, MNRAS, 442, 558 Google Scholar
Bolatto, A. et al. 2015, ApJ, 809, 175 Google Scholar
Bothwell, M. et al. 2013, MNRAS, 429, 3047 CrossRefGoogle Scholar
Bouwens, R. et al. 2014, ApJ, 795, 126 Google Scholar
Brinchmann, J. et al. 2004, MNRAS, 351, 1151 CrossRefGoogle Scholar
Capak, P. et al. 2015, Nature, 522, 455 Google Scholar
Carilli, C. L. & Walter, F. 2013, ARA&A, 51, 105 Google Scholar
Daddi, E. et al. 2007, ApJ, 670, 156 Google Scholar
Daddi, E. et al. 2010, ApJ (Letters), 714, 118 Google Scholar
Daddi, E. et al. 2015, A&A, 577, 46 Google Scholar
Decarli, R. et al. 2014, ApJ, 782, 78 CrossRefGoogle Scholar
Dessauges-Zavadsky, M. et al. 2015, A&A, 577, 50 Google Scholar
Elbaz, D. et al. 2007, A&A, 468, 33 Google Scholar
Freundich, J. et al. 2013, A&A, 553, 130 Google Scholar
Genzel, R. et al. 2010, MNRAS, 407, 209 CrossRefGoogle Scholar
Karim, A. et al. 2011, ApJ, 730, 61 Google Scholar
Magnelli, B. et al. 2011, A&A, 528, 35 Google Scholar
Magnelli, B. et al. 2013, A&A, 553, 132 Google Scholar
Maiolino, R. et al. 2015, MNRAS, 452, 54 Google Scholar
Noeske, K. G. et al. 2007, ApJ, 660, 47 Google Scholar
Pannella, M. et al. 2009, ApJ, 698, 116 Google Scholar
Riechers, D. et al. 2014, ApJ, 796, 84 Google Scholar
Rodighiero, G. et al. 2011, ApJ, 739, 40 Google Scholar
Saintonge, A. et al. 2013, ApJ, 778, 2 Google Scholar
Santini, P. et al. 2014, A&A, 562, 30 Google Scholar
Sargent, M. T. et al. 2014, ApJ, 793, 19 Google Scholar
Sargent, M. et al. 2012, ApJ, 747, 31 Google Scholar
Scoville, N. et al. 2014, ApJ, 783, 84 Google Scholar
Solomon, P. & Vanden Bout, 2005, ARA&A, 43, 677 Google Scholar
Spilker, J. S. et al. 2014, ApJ, 785, 149 Google Scholar
Tacconi, L. et al. 2013, ApJ, 768, 74 CrossRefGoogle Scholar
Tacconi, L. et al. 2010, Nature, 463, 781 Google Scholar
Walter, F. et al. 2014, ApJ, 782, 79 CrossRefGoogle Scholar
Willott, C., Carilli, C. L. & Wagg, J. 2015, ApJ, 807, 180 Google Scholar