Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-16T01:41:19.839Z Has data issue: false hasContentIssue false

Evolution models of red supergiants

Published online by Cambridge University Press:  28 July 2017

Cyril Georgy*
Affiliation:
Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland email: cyril.georgy@unige.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The red supergiant (RSG) phase is a key stage for the evolution of massive stars. The current uncertainties about the mass-loss rates of these objects make their evolution far to be fully understood. In this paper, we discuss some of the physical processes that determine the duration of the RSG phase. We also show how the mass loss affect their evolution, and can allow for some RSGs to evolve towards the blue side of the Hertzsprung-Russell diagram. We also propose observational tests that can help in better understanding the evolution of these stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Beasor, E. R. & Davies, B. 2016, MNRAS, 463, 1269 CrossRefGoogle Scholar
Benvenuto, O. G., Bersten, M. C., & Nomoto, K. 2013, ApJ, 762, 74 CrossRefGoogle Scholar
Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157 Google Scholar
Claeys, J. S. W., de Mink, S. E., Pols, O. R., Eldridge, J. J., & Baes, M. 2011, A&A, 528, A131 Google Scholar
Crowther, P. A. 2001, in Vanbeveren, D. (ed.), The Influence of Binaries on Stellar Population Studies, Vol. 264 of Astrophysics and Space Science Library, p. 215, Kluwer Academic Publishers, Dordrecht CrossRefGoogle Scholar
de Jager, C., Nieuwenhuijzen, H., & van der Hucht, K. A. 1988, A&AS, 72, 259 Google Scholar
Eggenberger, P., Meynet, G., & Maeder, A. 2002, A&A, 386, 576 Google Scholar
Eldridge, J. J., Izzard, R. G., & Tout, C. A. 2008, MNRAS, 384, 1109 Google Scholar
Georgy, C. 2012, A&A, 538, L8 Google Scholar
Georgy, C. & Ekström, S. 2016, IAU Focus Meeting, 29, 454 Google Scholar
Georgy, C., Ekström, S., Meynet, G., et al. 2012, A&A, 542, A29 Google Scholar
Georgy, C., Saio, H., & Meynet, G. 2014, MNRAS, 439, L6 Google Scholar
Giannone, P. 1967, ZAp, 65, 226 Google Scholar
Kippenhahn, R. & Weigert, A. 1990, Stellar Structure and Evolution, Stellar Structure and Evolution, XVI, 468 pp. 192 figs. Springer-Verlag Berlin Heidelberg New York. Also Astronomy and Astrophysics LibraryGoogle Scholar
Kudritzki, R. P., Bresolin, F., & Przybilla, N. 2003, ApJ, 582, L83 CrossRefGoogle Scholar
Langer, N. & Maeder, A. 1995, A&A, 295, 685 Google Scholar
Mauron, N. & Josselin, E. 2011, A&A, 526, A156 Google Scholar
Meynet, G., Chomienne, V., Ekström, S., et al. 2015a, A&A, 575, A60 Google Scholar
Meynet, G., Kudritzki, R.-P., & Georgy, C. 2015b, A&A, 581, A36 Google Scholar
Podsiadlowski, P., Hsu, J. J. L., Joss, P. C., & Ross, R. R. 1993, Nature, 364, 509 Google Scholar
Przybilla, N., Firnstein, M., Nieva, M. F., Meynet, G., & Maeder, A. 2010, A&A 517, A38+ Google Scholar
Saio, H., Georgy, C., & Meynet, G. 2013, MNRAS, 433, 1246 Google Scholar
Saio, H., Georgy, C., & Meynet, G. 2015, in Meynet, G., Georgy, C., Groh, J. H., & Stee, Ph. (ed.), IAU Symposium, Vol. 307 of IAU Symposium, pp 230–231Google Scholar
Smartt, S. J., Eldridge, J. J., Crockett, R. M., & Maund, J. R. 2009, MNRAS, 395, 1409 Google Scholar
Smith, N., Li, W., Filippenko, A. V., & Chornock, R. 2011, MNRAS, 412, 1522 Google Scholar
van Loon, J. T., Cioni, M.-R. L., Zijlstra, A. A., & Loup, C. 2005, A&A, 438, 273 Google Scholar
Vanbeveren, D., De Donder, E., van Bever, J., van Rensbergen, W., & De Loore, C. 1998a, New A, 3, 443 CrossRefGoogle Scholar
Vanbeveren, D., De Loore, C., & Van Rensbergen, W. 1998b, A&A Rev., 9, 63 Google Scholar
Walmswell, J. J. & Eldridge, J. J. 2012, MNRAS, 419, 2054 CrossRefGoogle Scholar