Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-21T06:24:37.411Z Has data issue: false hasContentIssue false

Event horizon scale emission models for Sagittarius A*

Published online by Cambridge University Press:  22 May 2014

J. Dexter*
Affiliation:
Departments of Physics and Astronomy, University of California, Berkeley, CA, USA email: jdexter@berkeley.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Very long baseline interferometry observations at millimeter wavelengths have detected source structure in Sgr A* on event horizon scales. Near-infrared interferometry will achieve similar resolution in the next few years. These experiments provide an unprecedented opportunity to explore strong gravity around black holes, but interpreting the data requires physical modeling. I discuss the calculation of images, spectra, and light curves from relativistic MHD simulations of black hole accretion. The models provide an excellent description of current observations, and predict that we may be on the verge of detecting a black hole shadow, which would constitute the first direct evidence for the existence of black holes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Bardeen, J. M. 1973, in Black holes (Les astres occlus), ed. DeWitt, B. S. & DeWitt, C. (New York: Gordon and Breach), 215Google Scholar
Bin Kamruddin, A., & Dexter, J. 2013, MNRAS 434, 765Google Scholar
Bower, G. C., Goss, W. M., Falcke, H., Backer, D. C., & Lithwick, Y. 2006, ApJ Lett. 648, L127Google Scholar
Broderick, A. E., Fish, V. L., Doeleman, S. S., & Loeb, A. 2009, ApJ 697, 45Google Scholar
Broderick, A. E., 2011, ApJ 735, 110Google Scholar
Bromley, B. C., Melia, F., & Liu, S. 2001, ApJ Lett. 555, L83Google Scholar
De Villiers, J.-P., & Hawley, J. F. 2003, ApJ 589, 458Google Scholar
Dexter, J. 2011, PhD thesis, University of WashingtonGoogle Scholar
Dexter, J., & Agol, E. 2009, ApJ 696, 1616Google Scholar
Dexter, J., Agol, E., & Fragile, P. C. 2009, ApJ Lett. 703, L142Google Scholar
Dexter, J., Agol, E., Fragile, P. C., & McKinney, J. C. 2010, ApJ 717, 1092Google Scholar
Dexter, J., & Fragile, P. C. 2013, MNRAS 432, 2252Google Scholar
Dexter, J., Kelly, B., Bower, G. C., et al. 2013, arXiv:1308.5968Google Scholar
Dexter, J., McKinney, J. C., & Agol, E. 2012, MNRAS 421, 1517Google Scholar
Dexter, J., & O'Leary, R. M. 2013, arXiv:1310.7022, 2014, ApJ 783L, 7Google Scholar
Dibi, S., Drappeau, S., Fragile, P. C., Markoff, S., & Dexter, J. 2012, MNRAS 426, 1928CrossRefGoogle Scholar
Doeleman, S. S., Fish, V. L., Broderick, A. E., Loeb, A., & Rogers, A. E. E. 2009, ApJ 695, 59Google Scholar
Doeleman, S. S., Weintroub, J., Rogers, A. E.E., et al. 2008, Nature 455, 78Google Scholar
Doeleman, S. S., Fish, V. L., Schenck, D. E., et al. 2012, Science, 338, 355CrossRefGoogle Scholar
Drappeau, S., Dibi, S., Dexter, J., Markoff, S., & Fragile, P. C. 2013, MNRAS 431, 2872Google Scholar
Eisenhauer, F., Perrin, G., Brandner, W., et al. 2008, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7013Google Scholar
Falcke, H., Melia, F., & Agol, E. 2000, ApJ Lett. 528, L13Google Scholar
Fish, V. L., Doeleman, S. S., Broderick, A. E., Loeb, A., & Rogers, A. E.E. 2009, ApJ 706, 1353Google Scholar
Fish, V. L., Doeleman, S. S., Beaudoin, C., et al. 2011, ApJ Lett. 727, L36Google Scholar
Fragile, P. C. 2009, ApJ Lett. 706, L246Google Scholar
Fragile, P. C., & Blaes, O. M. 2008, ApJ 687, 757CrossRefGoogle Scholar
Fragile, P. C., Blaes, O. M., Anninos, P., & Salmonson, J. D. 2007, ApJ 668, 417Google Scholar
Gammie, C. F., McKinney, J. C., & Tóth, G. 2003, ApJ 589, 444Google Scholar
Generozov, A., Blaes, O., Fragile, P. C., & Henisey, K. B. 2013, ArXiv e-prints, 2014, ApJ 780, 81Google Scholar
Hamaus, N., Paumard, T., Müller, T., et al. 2009, ApJ 692, 902Google Scholar
Johannsen, T., & Psaltis, D. 2010, ApJ 718, 446Google Scholar
Marrone, D. P., Moran, J. M., Zhao, J.-H., & Rao, R. 2006, J. Phys. Conference Series, 54, 354Google Scholar
McKinney, J. C., & Blandford, R. D. 2009, MNRAS 394, L126Google Scholar
McKinney, J. C., Tchekhovskoy, A., & Blandford, R. D. 2012, MNRAS 423, 3083Google Scholar
McKinney, J. C., Tchekhovskoy, A., & Blandford, R. D. 2013, Science, 339, 49Google Scholar
Moscibrodzka, M., & Falcke, H. 2013, ArXiv e-prints, 2013, A&A 559L, 3Google Scholar
Mościbrodzka, M., Gammie, C. F., Dolence, J. C., Shiokawa, H., & Leung, P. K. 2009, ApJ 706, 497Google Scholar
Neilsen, J., Nowak, M. A., Gammie, C., et al. 2013, ApJ 774, 42Google Scholar
Noble, S. C., Leung, P. K., Gammie, C. F., & Book, L. G. 2007, Class. and Quant. Gravity, 24, 259Google Scholar
Riquelme, M. A., Quataert, E., Sharma, P., & Spitkovsky, A. 2012, ApJ 755, 50Google Scholar
Shcherbakov, R. V., & Huang, L. 2011, MNRAS 410, 1052Google Scholar
Shcherbakov, R. V., Penna, R. F., & McKinney, J. C. 2012, ApJ 755, 133Google Scholar
Wang, Q. D., Nowak, M. A., Markoff, S. B., et al. 2013, Science, 341, 981Google Scholar